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ABSTRACT

Milk is regarded as an important nutrient for hu-
mans, and Chinese Holstein cows provide high-quality 
milk for billions of Chinese people. Therefore, detect-
ing quantitative trait nucleotides (QTN) or candidate 
genes for milk production traits in Chinese Holstein 
is important. In this study, we performed genome-
wide association studies (GWAS) in a Chinese Hol-
stein population of 6,675 cows and 71,633 SNP using 
deregressed proofs (DRP) as phenotypes to replicate 
our previous study in a population of 1,815 cows and 
39,163 SNP using estimated breeding values (EBV) 
as phenotypes. The associations between 3 milk pro-
duction traits—milk yield (MY), fat percentage (FP), 
and protein percentage (PP)—and the SNP were 
determined by using an efficient rotated linear mixed 
model, which benefits from linear transformations of 
genomic estimated values and Eigen decomposition of 
the genomic relationship matrix algorithm. In total, we 
detected 94 SNP that were significantly associated with 
one or more milk production traits, including 7 SNP 
for MY, 76 for FP, and 36 for PP; 87% of these SNP 
were distributed across Bos taurus autosomes 14 and 
20. In total, 83 SNP were found to be located within 
the reported quantitative trait loci (QTL) regions, 
and one novel segment (between 1.41 and 1.49 Mb) on 
chromosome 14 was significantly associated with FP, 
which could be an important candidate QTL region. 
In addition, the detected intervals were narrowed down 
from the reported regions harboring causal variants. 
The top significant SNP for the 3 traits was ARS-
BFGL-NGS-4939, which is located within the DGAT1 
gene. Five detected genes (CYHR1, FOXH1, OPLAH, 
PLEC, VPS28) have effects on all 3 traits. Our study 
provides a suite of QTN, candidate genes, and a novel 

QTL associated with milk production traits, and thus 
forms a solid basis for genomic selection and molecular 
breeding for milk production traits in Chinese Holstein.
Key words: Chinese Holstein, milk production traits, 
genome-wide association study (GWAS), quantitative 
trait nucleotides (QTN)

Short Communication

Milk is an important source of nutrients for humans, 
and milk production traits are the most important 
economic traits in dairy cattle. Over the last decades, 
several genome-wide association studies (GWAS) fo-
cusing on identifying genes for milk production traits 
have been performed in many different dairy cattle 
populations, and important candidate genes associated 
with milk production traits have been identified (Heyen 
et al., 1999; Cohen-Zinder et al., 2005; Mai et al., 2010; 
Pryce et al., 2010; Maxa et al., 2012; Meredith et al., 
2012; Raven et al., 2014; Nayeri et al., 2016). In our 
previous GWAS study, we identified 105 significant 
SNP associated with milk production traits using the 
Illumina BovineSNP50 BeadChip (Illumina Inc., San 
Diego, CA) and the EBV pseudo-phenotype (Jiang et 
al., 2010). In the current study, more high-density SNP 
markers were used in the analyses. In addition, some 
studies have shown that EBV should not be used for as-
sociation analysis (Garrick et al., 2009). Therefore, der-
egressed proofs (DRP) were derived using the method 
proposed by Garrick et al. (2009) based on the EBV 
and used as the response variable in the current study. 
We then carried out GWAS in a larger Chinese Holstein 
population by rotated linear mixed model algorithm, 
which takes advantage of linear transformations of 
genomic estimated values (Wang et al., 2014; Ning et 
al., 2018a) and Eigen decomposition of the genomic 
relationship matrix algorithm (Lippert et al., 2011). We 
further validated the results by comparing the detected 
quantitative trait nucleotides (QTN) to the QTLdb 
database (http:​/​/​www​.animalgenome​.org/​QTLdb; Hu 
et al., 2016) for each trait of interest, respectively.
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In our study, a Chinese Holstein population of 6,675 
cows were genotyped with the BovineSNP50v1 Bead-
Chip (54,001 SNP; Illumina Inc.), the BovineSNP50v2 
BeadChip (54,609 SNP; Illumina Inc.), and the Gene-
Seek Genomic Profiler HD (76,879 SNP; Neogen Corp., 
Lansing, MI), which were described in our previous 
longitudinal GWAS (Ning et al., 2018b). The individu-
als genotyped with the GeneSeek Genomic Profiler HD 
chip were used as reference, and all others were imputed 
to the high density of 70k SNP by using FImputev2.2 
(Sargolzaei et al., 2014). After removing SNP with a 
minor allele frequency <0.03 and P-value of Hardy-
Weinberg equilibrium <10−6, 71,633 SNP remained and 
were utilized. We obtained the EBV of the 6,675 cows 
and their parents from the routine national genetic 
evaluation and estimated DRP by using the method 
proposed by Garrick et al. (2009). The summary statis-
tics of the EBV and DRP for the 3 traits of the cows 
are presented in Supplemental Table S1 (https:​/​/​doi​
.org/​10​.3168/​jds​.2018​-15298).

A rapid genome-wide mixed-model association 
analysis method by linear transformations of genomic 
estimated values was used in the present study. The 
method has been described in the previous published 
articles (Wang et al., 2014; Ning et al., 2018a). We 
focus on the additive test here, and further improve the 
computational efficiency by Eigen decomposition of the 
genomic relationship matrix. A brief derivation of the 
method is shown below.

The whole additive SNP effect model is given as fol-
lows:

	 y = Xb + Zu + e,	 [1]

where we assume that there are n individuals and m 
SNP. Thus, y is an n × 1 vector of DRP values; b is a 
vector of fixed effects, which contains only population 
mean in our study; u is an m × 1 vector of additive 
SNP effects; e is a vector of residual errors; X is the 
design matrix for the fixed effects; Z are standardized 
design matrices for additive SNP effects. Matrix Z is 
constructed as follows:

	 Z z z z z= ( ) −( )∑1 2 2 1, ,..., , ..., ,j m j jp p 	 [2]

where pj is the allele frequency of allele A for the jth 
SNP, and zj is the jth SNP vector with elements defined 
as
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For Eq. [1], we define the following variance matrices of 
all random effects,

	 u 0, I e 0, I∼ ∼σ σa e
2 2( ) ( ), , 	 [4]

where I is the identity matrix, and σa
2 and σe

2 are addi-
tive and residual variances, respectively. We set a = 
Zu, and a is defined as individuals’ additive effect vec-
tor. Then, Eq. [1] can be rewritten as

	 y = Xb + a + e.	 [5]

Then, the phenotypic (co)variances matrix is

	
V y a e Z u Z e

ZZ I

= = + = ′ +

= ′ +

var( ) var( ) var( ) var( )

,σ σa e
2 2 	 [6]

where we define K = ZZ′. Matrix K is the genomic 
relationship matrix identical to the first method of 
VanRaden (2008). Eigen decomposition of K gives K 
= UDU′, where D is a diagonal matrix containing the 
eigenvalues and U is the matrix of eigenvectors in the 
order of the corresponding eigenvalues (UU′ = I). We 
rotate Eq. [3] with U′, and the mixed model is rewrit-
ten as

	 ′ = ′ + ′ + ′U y U Xb U Zu U e.	 [7]

Defining y U y X U X Z U Z e U e* , , , ,= ′ ′ ′ ′ *=  *=  * =  then

	 y X b Z u e* * * * .= + + 	 [8]

The rotated phenotypic (co)variances matrix is
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The matrix V* is a diagonal matrix, and its inversion 
can be obtained by replacing each element in the di-
agonal with its reciprocal. It is similar to the variance 
estimation method proposed by Lippert et al. (2011).

According to the BLUP method proposed by Hender-
son (1949), the random SNP effects can be predicted by

	 ˆ ˆ * * *,u I Z P y= ( ) ′σa
2 	 [10]
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where

	 P V V X X V X X V* * * * * * * * * .= − ′( ) ′− − − − −1 1 1 1 1 	

The product of P* and y* can be obtained as follows:
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The (co)variance matrix of estimated SNP effects is
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We can prove that
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Therefore, Eq. [11] can be further simplified as 

	 var ˆ ˆ * * * .u Z P Z( ) = ( ) ′σa
2 2

	 [14]

For the jth SNP, the estimated effect and correspond-
ing variance are
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where zj is the jth SNP vector of the rotated SNP ma-

trix Z*. With matrix X V X′ − −( )* * *1 1
 precalculated, it 

requires only O(nt), which is the time complexity, be-
cause V*−1 is a simple diagonal matrix. Here, t is the 
rank of X*, and t = 1 as the only intercept is included 
in the model.

The Wald chi-squared test for jth SNP effect is

	
ˆ

var ˆ
.

uj

jj

2
2 1

u( )
( )∼ χ 	 [17]

The source code can be freely accessed at https:​/​/​
github​.com/​chaoning/​rotatedGWAS.

Before scanning markers in the GWAS, we first 
estimated additive variances, residual variances, and 
heritability for the 3 milk traits with DRP used as 
phenotypes (Supplemental Table S2; https:​/​/​doi​.org/​
10​.3168/​jds​.2018​-15298). The heritability of DRP can 
reflect the accuracy of DRP; that is, higher heritability 
indicates higher accuracy. Compared with the study of 
Jensen et al. (2012) in the Nordic Holstein population 
(h2 ~ 0.9), the heritability of DRP in our Chinese Hol-
stein population was much lower. This is because our 
population of Chinese Holsteins included mostly cows, 
whereas the Nordic Holstein population in their analy-
sis comprised bulls with a large group of daughters.

To control false-positive rates, the Bonferroni cor-
rection was adopted to adjust for multiple testing, and 
the threshold for genome-wide significance was 0.05/N, 
where N was the number of effective SNP calculated 
by the PLINK “-indep-pairwise 50 5 0.5” command 
(Purcell et al., 2007). This command calculates linkage 
disequilibrium (LD) between each pair of SNP within 
a window of 50 SNP, removes 1 SNP of a pair with LD 
>0.2 until there were no such pairs, and then moves 
the window forward by 5 SNP each time until it passes 
through the whole genome. Finally, 45,727 SNP passed 
this control filter and thus the genome-wise significant 
threshold was 0.05/45,727 = 1.093E-6.

A quantile-quantile (Q-Q) plot was used to examine 
whether population stratification existed in our experi-
mental population (Pearson and Manolio, 2008). From 
Figure 1, it is apparent that the results were not threat-
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ened by systematic bias for MY, FP, and PP. The asso-
ciation analysis showed that 94 SNP were significantly 
associated with milk production traits, including 7 SNP 
for MY, 76 for FP, and 36 for PP (Supplemental Tables 
S3, S4, and S5, respectively; https:​/​/​doi​.org/​10​.3168/​
jds​.2018​-15298). Genome-wide Manhattan plots of −
log10(P) are shown in Figure 2. Several SNP were asso-
ciated with more than one milk production trait, which 
might be explained by genetic correlations among them 
(Toghiani, 2012; Zhao et al., 2015). The top significant 
SNP for the 3 traits was ARS-BFGL-NGS-4939, which 
is located within the DGAT1 gene on BTA14; DGAT1 
is a functional causal gene affecting milk yield and milk 
composition traits, which encodes the key rate-limiting 
enzyme catalyzing the last step in triglyceride synthe-
sis (Smith et al., 2000; Grisart et al., 2002, 2004). In 
addition, 5 genes (CYHR1, FOXH1, OPLAH, PLEC, 
VPS28) were detected to have potential effects on all 3 
traits, which could be useful for molecular breeding for 
milk production in Chinese Holsteins. Furthermore, 6 
common significant SNP were identified for the 3 traits 
and they showed effects for MY in the opposite direc-
tion to those for FP and PP (Supplemental Table S6; 
https:​/​/​doi​.org/​10​.3168/​jds​.2018​-15298).

The significant SNP were mainly located within a 
0.6-Mb segment (between 1.5 and 2.1 Mb) on BTA14 
for MY; a 1.1-Mb segment (93.5–94.6 Mb) on BTA5 
and a 4.3-Mb segment (1.4–5.7 Mb) on BTA14 for FP; 
and a 1.2-Mb segment (1.4–2.6 Mb) on BTA14 and 
a 3.4-Mb segment (31.2–34.6 Mb) on BTA20 for PP. 
Most of these significant SNP were distributed across 
BTA14 and 20, with 71% (67/94) on BTA14, which is 
consistent with the findings of previous studies (Jiang 

et al., 2010; Mai et al., 2010; Sermyagin et al., 2018), 
and 83 SNP fell in reported QTL regions (http:​/​/​www​
.animalgenome​.org/​QTLdb). Furthermore, one novel 
segment (between 1.41 and 1.49 Mb) on BTA14 was 
significantly associated with FP and could be an impor-
tant potential candidate QTL region.

Compared with our previous GWAS in Chinese Hol-
steins by Jiang et al. (2010), we extended the popula-
tion size from 1,815 to 6,675 cows and increased the 
marker density from 39,163 to 71,633 SNP. The present 
study detected narrower genomic intervals harboring 
causal variants. A marker-derived genomic relationship 
matrix replaced the pedigree-based numerator relation-
ship matrix to model the polygenic effect, which might 
be an important cause of the smaller QTL intervals. 
Additionally, DRP obtained from the routine national 
genetic evaluation of millions of individuals, instead 
of EBV, were used as the response variable, which 
benefited from correcting confounding environmental 
factors and taking advantage of population pedigree 
information. Our results were similar to the outcome 
of Ning et al. (2018b), who validated their novel longi-
tudinal GWAS method using test-day records with the 
same chip data and conducted a GWAS of MY, FP, 
and PP in the first 3 parities.

The idea of implementing GWAS by linear trans-
formation of genomic estimated values originated 
with Strandén and Garrick (2009), who derived the 
equivalency of SNP-BLUP and genomic (G)BLUP for 
genomic predictions. Taking advantage of their deriva-
tion, Wang et al. (2012) proved that BLUP of SNP 
effects could be obtained by back-solving SNP solutions 
after GBLUP. To test the significance of SNP effects, 

Figure 1. Quantile-quantile (Q-Q) plots of genome-wide association results for milk yield (MY), fat percentage (FP), and protein percentage 
(PP), respectively.
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Gualdrón Duarte et al. (2014) built test statistics ac-
cording to the estimated SNP effects and corresponding 
variances. Ning et al. (2018a) extended the algorithm 
to epistatic association analysis. In their studies, they 
found that their GBLUP-based method had almost 
identical P-values with better-known “one-SNP-at-
a-time” methods, such as EMMA (efficient mixed 
model association; Kang et al., 2008) and FaST-LMM 
(factored spectrally transformed linear mixed models; 
Lippert et al., 2011). However, the time complexity 
of variance component estimation is O(n3) for each 
iteration. In this study, we first performed eigenvalue 
decomposition of genomic relationship matrix and then 
rotated the linear mixed model with the eigenvectors 
[time complexity of O(n2)], which reduced the time 
complexity of variance component estimation to O(n). 
The time complexity for GWAS is also reduced to 
O(tn) in the rotated model compared with O(tn2) of 
previous GBLUP-based GWAS, where t is the rank of 
matrix X. Because of these advantages, our optimized 

program took only 33 min for each trait analysis on a 
single core of Intel Xeon E5 2.2 GHz CPU, and it could 
significantly expedite variance component estimation 
and GWAS analysis compared with previous GBLUP-
based GWAS.

In summary, we revealed 94 significant SNP distrib-
uted in 23 genes associated with MY, FP, and PP with 
our optimized program. These findings promote a bet-
ter understanding of the genetic architecture of milk 
production traits and provide important information 
on potential markers for genomic selection in Chinese 
Holsteins.
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