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Abstract

Motivation: Epistasis provides a feasible way for probing potential genetic mechanism of complex

traits. However, time-consuming computation challenges successful detection of interaction in

practice, especially when linear mixed model (LMM) is used to control type I error in the presence

of population structure and cryptic relatedness.

Results: A rapid epistatic mixed-model association analysis (REMMA) method was developed to

overcome computational limitation. This method first estimates individuals’ epistatic effects by an

extended genomic best linear unbiased prediction (EG-BLUP) model with additive and epistatic kin-

ship matrix, then pairwise interaction effects are obtained by linear retransformations of individ-

uals’ epistatic effects. Simulation studies showed that REMMA could control type I error and in-

crease statistical power in detecting epistatic QTNs in comparison with existing LMM-based FaST-

LMM. We applied REMMA to two real datasets, a mouse dataset and the Wellcome Trust Case

Control Consortium (WTCCC) data. Application to the mouse data further confirmed the perform-

ance of REMMA in controlling type I error. For the WTCCC data, we found most epistatic QTNs for

type 1 diabetes (T1D) located in a major histocompatibility complex (MHC) region, from which a

large interacting network with 12 hub genes (interacting with ten or more genes) was established.

Availability and implementation: Our REMMA method can be freely accessed at https://github.

com/chaoning/REMMA.

Contact: liujf@cau.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have located many gen-

etic variants associated with various traits. However, these variants

totally explain a small proportion of phenotypic variance for most

complex traits.

Epistasis, which is generally defined as interaction between dif-

ferent genes, is considered as one of potential explanations of the

‘missing heritability’ (Mackay and Moore, 2014; Upton et al.,

2016). In statistics, the term epistasis for two loci is defined as the

deviation of the two-locus joint genotypic value from the sum of the
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contributing single-locus genotypic values (Fisher, 1918). The effect

of a single gene may be null or too weak to test, but it may largely

contribute to the phenotypic variation jointly with other genes

(Zhang et al., 2014).

For some traits, epistasis may contribute a considerable propor-

tion of phenotypic variance, and even surpass the additive variance.

For example, the estimated additive variance and epistatic variance

in proportion to phenotypic variance were 35.7 and 9.7% for daily

gain in pigs according to the study of Su et al. (2012); Xu (2013) re-

ported 17 and 22% of phenotypic variance explained by additive

and epistatic effect for rice tiller number. Epistasis also plays a cru-

cial role in human complex disease. Both Wan et al. (2010) and

Lippert et al. (2013) located thousands of epistatic signals for type 1

diabetes (T1D) in the major histocompatibility complex (MHC) re-

gion. Investigating epistasis will help to uncover the complex genetic

system.

However, computational inefficiency hinders the wide applica-

tion of the genome-wide epistatic association analysis. For example,

in order to examine the pairwise interaction of 500 000 SNPs, a total

of 125 billion statistical tests should be conducted, which is 250

thousand times that of the single locus analysis. This problem has at-

tracted wide attentions and a growing number of methods have

emerged to deal with the computational challenge.

The most commonly used methods are regression based meth-

ods, implemented by software packages such as PLINK (Chang

et al., 2015), BOOST (Wan et al., 2010) and FastEpistasis

(Schupbach et al., 2010). The advantage of these methods is the high

computational efficiency due to low time complexity. Zhang et al.

(2014) proposed a functional regression (FRG) model to detect

gene-gene interactions with the next-generation sequencing (NGS)

data. The FRG model reduced the dimension of collective informa-

tion in gene by orthogonal polynomials and collectively tested the

interaction between all possible pairs of SNPs within two genes. The

number of interactions is therefore substantially reduced. However,

in these analyses, individuals with cryptic relationship should be

removed to guarantee individuals within the population to be unre-

lated, which may result in loss of detection power. In order to deal

with population with structure and cryptic relatedness, additive kin-

ship matrix was included in the model to control the type I error by

software FaST-LMM (Lippert et al., 2011).

Linear mixed models (LMM) can correct systematic environ-

mental factors, control population stratification and account for re-

latedness between individuals, and have been widely applied to

GWAS. Numerous efficient methods based on LMM have emerged,

such as EMMAX (Kang et al., 2010), TASSEL (Zhang et al., 2010),

FaST-LMM (Lippert et al., 2011) and GEMMA (Zhou and

Stephens, 2012). However, the computational efficiency can be ex-

tremely low when performing exhaustive epistatic association with

the increases of sample size and marker density. Lippert et al. (2013)

analyzed an expanded Wellcome Trust dataset (Wellcome Trust

Case Control, 2007) deployed across 28 000 cores using FaST-

LMM. It would take 950 computer years, with a wall-clock time of

13 days, across all seven phenotypes for 14 925 individuals geno-

typed with 356 441 SNPs.

To substantially reduce computational burden of LMM-based

epistasis analysis, we proposed a rapid epistatic mixed-model associ-

ation analysis method (REMMA) to detect pairwise interactions

across the genome. The basic idea of our method is to estimate epi-

static effects by linear retransformations of genomic estimated val-

ues. The idea is similar to the equivalence between genomic best

linear unbiased prediction (G-BLUP) and SNP-BLUP which is

derived for additive effects analyses (Shen et al., 2013; Stranden and

Garrick, 2009). We expand this equivalence aforementioned to the

field of GWAS specially focusing on epistatic effects detection

herein. Basically, each individual’s epistatic value is the accumula-

tion of pairwise interaction effects. We first estimate individuals’

epistatic effects by an extended genomic best linear unbiased predic-

tion (EG-BLUP) model (Jiang and Reif, 2015) with epistatic kinship

matrix, and then estimate pairwise interaction effects by linear

retransformations of the individuals’ epistatic effects. The Wald

Chi-squared tests based on transformed interaction effects are used

to examine significant association with phenotypes. The time com-

plexity has been substantially reduced with REMMA (detail shown

in RESULT). Moreover, additive and epistatic polygenic effects are

simultaneously included in our model to control multiple polygenic

background effects. To further lower the computational burden, we

developed a fast-speed version of REMMA (REMMA-scan).

REMMA-scan first scans the genome-wide epistatic effects with run-

ning time that is linear in the cohort size, and then select top inter-

actions to calculate their P-values. We performed a series of

simulation studies to investigate the properties of the proposed

method. We then further validated our method with two real data-

sets, an intercross mouse dataset (Jarvis and Cheverud, 2011) and a

human dataset from the Wellcome Trust Case Control Consortium

(WTCCC).

2 Materials and methods

2.1 From individuals’ genomic estimated values to SNP

effects
The whole additive and epistatic SNP effect model is shown below,

y ¼ Xbþ Zua þQui þ e : (1)

Here, we assume that there are n individuals and m SNPs. Thus,

y is a n�1 vector of phenotypic values; b is a vector of fixed effects;

ua is a m�1 vector of additive SNP effects; ui is an m(m-1)/2�1

vector of exhaustive epistatic SNP effects; e is a vector of residual

errors; X is the design matrix for the fixed effects; Z and Q are

standardized design matrices for additive and epistatic SNP effects,

respectively. Matrix Z is constructed as follows,

Z ¼ ðz1; z2; . . . ; zj; . . . ; zmÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X

pjð1� pjÞ
q

; (2)

where pj is the allele frequency of allele A for the jth SNP, and zj is

the jth SNP vector with elements defined as

zj ¼

2� 2pj AA

1� 2pj Aa

0� 2pj aa

:

8>><
>>: (3)

The Q matrix is constructed from Z,

Q ¼ fZj#Zkgj¼1::m;k¼2::m
j 6¼k;j<k : (4)

The symbol # represents the Hadamard matrix product (element

wise multiplication). Matrix Q has n rows and m(m-1)/2 columns,

and each column represents the interaction SNP vector of the jth

and kth SNPs.

For Equation (1), we define the following variance matrices of

all random effects,

ua � ð0; Ir2
aÞ; ui � ð0; 2Ir2

i Þ; e � ð0; Ir2
e Þ:
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where I is identity matrix. Following Henderson (1949), the mixed

model equation (MME) for (1) is (Here, R ¼ Ir2
e )

X0R�1X X0R�1Z X0R�1Q

Z0R�1X Z0R�1Zþ Ir2
a

� ��1
Z0R�1Q

Q0R�1X Q0R�1Z Q0R�1Qþ 2Ir2
i

� ��1

2
664

3
775
bb
bua

bu i

2
664

3
775

¼
X0R�1y

Z0R�1y

Q0R�1y

2
64

3
75 (5)

However, this MME is computationally unsolvable due to too

many random effects when m is large (m for additive effects and

m(m-1)/2 for epistatic effects).

If we set a ¼ Zua; i ¼ Qui, and a and i are defined as individuals’

additive and epistatic effect vector. Then, Equation (1) can be

rewritten as:

y ¼ Xbþ aþ iþ e (6)

The variance matrices for a and i are:

varðaÞ ¼ varðZuaÞ ¼ ZvarðuaÞZ0 ¼ ZZ0r2
a ;

varðiÞ ¼ varðQuiÞ ¼ QvarðuiÞQ0 ¼ 2QQ0r2
i :

If we define Ka ¼ ZZ0 and Ki ¼ 2QQ0, then varðaÞ ¼ Kar2
a ; varðiÞ

¼ Kir2
i : Ka is additive kinship matrix as defined by VanRaden

(2008) and Ki is the epistatic kinship matrix as defined by Xu

(2013). However, the epistatic kinship matrix is computationally in-

efficient using the formula of 2QQ’. In genomic selection of animal

breeding, Su et al. (2012) utilized equation of Ka # Ka referred to

traditional pedigree-based BLUP (Henderson, 1985). However, the

equation included interactions of loci with themselves. An accurate

and efficient form proved by Jiang and Reif (2015) is

Ki ¼ Ka#Ka � ðZ#ZÞðZ#ZÞ0: (7)

where # represents the Hadamard matrix product.

The MME for Equation (6) is:

X0R�1X X0R�1I X0R�1I

I0R�1X I0R�1Iþ Kar2
a

� ��1
I0R�1I

I0R�1X I0R�1I I0R�1Iþ Kir2
i

� ��1

2
6664

3
7775
bb
ba
bi

2
664

3
775

¼
X0R�1y

I0R�1y

I0R�1y

2
664

3
775: (8)

To demonstrate the derivation process, we solve (5) and get

bui ¼ ðQ0R�1Qþ I=r2
i Þ
�1Q0R�1ðy�Xbb � ZbuaÞ (9)

where hat vectors means corresponding estimated values. Giving

that matrices M and S are nonsingular, the Woodbury Matrix iden-

tity states that

ðMþ BSC0Þ�1 ¼M�1 �M�1BðS�1 þ C0M�1BÞ�1C0M�1 (10)

Applying (10) to ðQ0R�1Qþ I=r2
i Þ
�1 in (9) assuming M ¼ I=r2

i ;

Q0 ¼ B ¼ C and S ¼ R�1, we obtain

bui ¼ ðIr2
i � Ir2

i Q0ðRþQIr2
i Q0Þ�1QIr2

i ÞQ0R�1ðy�Xbb �ZbuaÞ:

This can be simplified to

bu i ¼ ðIQ0r2
i � IQ0ðR=r2

i þ KiÞ�1Kir
2
i ÞR�1ðy�Xbb � ZbuaÞ: (11)

Applying (10) again ðS ¼ R=r2
i ; B ¼ C ¼ I and M ¼ KiÞ, gives

ðR=r2
i þ KiÞ�1 ¼ K�1

i � K�1
i ðR�1r2

i þ K�1
i Þ
�1K�1

i :

Applying ba ¼ Zbua and further simplifying Equation (11) leads to

bui ¼ Q0K�1
i ðR�1 þ K�1

i =r2
i Þ
�1R�1ðy�Xbb � baÞ: (12)

Solving (8), we get the estimated values of individuals’ epistatic ef-

fects, i.e.

bi ¼ ðR�1 þ K�1
i =r2

i Þ
�1R�1ðy�Xbb � baÞ: (13)

Combining (13) and (12) leads to

bui ¼ Q0K�1
i
bi: (14)

Defining O ¼ K�1
i
bi, which can be computed prior to the epistatic

scan, we get bu i ¼ Q0O.

We need to calculate the error matrix of bui, which is

varðbuiÞ ¼ Q0K�1
i varðbiÞK�1

i Q. Following Henderson (1975), we have

varðbiÞ ¼ Kir
2
i � C33; (15)

where C33 is the block in the lower-right corner of the inverse of the

coefficient matrix of (8) as shown below,

C11 C12 C13

C12 C22 C23

C13 C23 C33

2
664

3
775:

Assume P ¼ K�1
i varðbiÞK�1

i and the Cholesky decomposition of P

gives P 5 LL’. Now

varðbu iÞ ¼ Q0LL0Q ¼ ðQ0LÞðQ0LÞ0 (16)

The diagonal elements of varðbuiÞ are the estimated variance for

the estimated pairwise interaction effects.

2.2 Test statistics
For the interaction effect between the jth SNP and the kth SNP, the

estimate and its variance are

uj;k ¼ ðzj#zkÞ0O; varðbuj;kÞ ¼ ðzj#zkÞ0LL0ðzj#zkÞ0 (17)

The Wald Chi-squared test is defined as,

bu2
j;k

varðbuj;kÞ
� v2ð1Þ (18)

We can see that interaction effects are calculated by vector-

vector multiplication whose computational complexity is O(n), and

the variance of estimated effects are calculated by matrix-vector

multiplication whose computational complexity is O(n2).

Similarly, for the additive SNP effects, we have

bua ¼ Z0K�1
a ba; varðbuaÞ ¼ Z0K�1

a varðbaÞK�1
a Z; and varðbaÞ

¼ Kar
2
a �C22 (19)

The Wald Chi-squared test for the kth additive SNP effect is

uk ¼ zk
0K�1

a ba; varðbukÞ ¼ zi
0LL0zi

0 (20)

bu2
k

varðbukÞ
� v2ð1Þ (21)
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If we only focus on the additive SNP effects, the epistatic effects

can be excluded from Equations (1) and (6) and similar test statistics

for additive SNP effects can also be obtained.

2.3 REMMA-scan
To further relax the computational burden of full REMMA method,

we develop a fast-speed version of REMMA (REMMA-scan).

REMMA-scan firstly scans the genome-wide epistatic effects with

running time that is linear in the cohort size, then selects top inter-

actions to calculate their P-values. The detailed workflow is specific-

ally described below:

Step 1: Randomly select S (e.g. 106) SNP pairs and calculate their

epistatic effects.

Step 2: Normal distribution is fitted with sample mean and standard

deviation of the S epistatic effects, and different quantiles are

calculated.

Step 3: Scan the genome-wide epistatic effects and select the top

SNP–SNP pairs passing different quantiles.

Step 4: Examine these top SNP pairs with full REMMA.

Step 5: If no or less than the expected additional significant inter-

actions are observed between continuous quantiles, take the result

from Step 4 as final; otherwise, add additional quantiles and go to

Step 3.

2.4 Simulation studies
In our simulation studies, the real genotypes of 959 individuals from

the Human Genetic Analysis Workshop 18 (GAW18) dataset

(Bickeboller et al., 2014) were used for phenotypic simulation. We

randomly sampled 1K, 10K, 100K and 300K SNPs from the whole

genome to achieve different marker densities. The phenotypes were

generated with equation: phenotype¼population meanþ addi-

tiveþ epistaticþ residual. The population mean was set to 4.0. The

additive effects were allocated to 100 SNPs, and the epistatic effects

were allocated to 5, 10, 100 or 500 SNP–SNP pairs. We showed the

detailed information of additive and epistatic QTNs in

Supplementary Table S5. Following the previous studies (Liu et al.,

2016; Zhang et al., 2010), the additive and epistatic effects followed

a geometric distribution, i.e. the ith QTN effect was set as ai, where

a¼0.9. The residuals were drawn from a normal distribution. The

phenotypic variance explained by the additive effects (h2
a) was 30%,

and the phenotypic variance contributed by the epistatic effects (h2
i )

was set at the following levels: 10, 30 and 60%. The epistatic vari-

ance was fixed, and the additive variance and residual variance were

scaled to achieve the required simulation experiments. For each ex-

periment, the simulation was repeated 100 or 1000 times. A positive

interaction was considered to have been identified if a SNP–SNP

pair which showed high linkage disequilibrium (LD) (r2>0.5)

(Gabriel et al., 2002; Wu et al., 2014) with the respective true QTN

pairs passed the thresholds of different Type I error. All the other

pairwise SNPs were unlinked to the true interaction QTNs, and the

cumulative distribution of the P-values should show a uniform dis-

tribution with no inflated false positive (Kang et al., 2008; Yu et al.,

2006). In our study, we also explored the influence on testing addi-

tive SNP effects with different levels of h2
i .

2.5 Real data
The mouse dataset contained 1304 samples from the F10 generation

of an intercross line, and each individual was genotyped with 1470

SNPs. The phenotype used in the study was reproductive fat pad

weight. The human dataset was obtained from the Wellcome Trust

Case Control Consortium (WTCCC). The data contained genotypes

of 13 999 individuals for seven common diseases: bipolar disorder

(BD), coronary artery disease (CAD), crohn disease (CD), hyperten-

sion (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D) and

type 2 diabetes (T2D). The 1500 controls from the UK Blood

Service Control Group (NBS) were also included in our analysis. To

achieve high quality data, SNPs with minor allele frequency less

than 5% or more than 1% missing data were removed for the con-

trol group and also from each case group. We also performed the

Hardy-Weinberg Equilibrium (HWE) test for each SNP in the con-

trol group and SNPs with a P-value<0.001 were excluded from the

data. After filtering, there were 15 490 individuals with 368 895

SNPs for the subsequent analysis. The Bonferroni correction was

used to control false-positive rates for the two real datasets.

3 Results

3.1 Analytical models
We employed different analytical methods with respective model fit-

tings for performance comparison in the analyses as below:

PLINK: Simple linear model is utilized to examine the additive and

epistatic effect (PLINK-add and PLINK-epi).

FaST-LMM: The method is based on linear mixed model and addi-

tive kinship matrix is utilized to control the type I error in testing

additive and epistatic effect (FaST-LMM-add and FaST-LMM-

epi).

REMMA: The method is based on the linear mixed model. Besides

the additive, epistatic kinship matrix is also included in the model

in testing additive and epistatic effect (REMMA-epi-add and

REMMA-epi). We also include REMMA-add model to test addi-

tive effect in the study, which only incorporates additive kinship

matrix in the model.

REMMA-scan: A fast-speed version of REMMA in testing genome-

wide epistatic effect and its detailed workflow is shown in

‘Materials and methods’ section.

3.2 Simulation
Extensive simulation studies were performed to systematically com-

pare the performance of REMMA with two alternative methods

(PLINK and FaST-LMM).

The quantile–quantile (Q–Q) plots of different methods in test-

ing epistatic SNP effects at different h2
i s (phenotypic variance con-

tributed by epistatic effects; i.e. epistatic heritability) and marker

densities are shown in Figure 1 and Supplementary Figure S1. For all

simulation experiments, REMMA controls type I error better than

PLINK and FaST-LMM. The simple linear model implemented by

PLINK has the inflated type I error with the increases of h2
i level.

However, marker density does not influence the performance of

PLINK. FaST-LMM includes additive kinship matrix to control

polygenic effects. It performs well at relatively low epistatic herit-

ability, but still leads to the inflated type I error as the epistatic herit-

ability increases. Nevertheless, we observed that type I error by

FaST-LMM reduced when marker density increases.

The receiver operating characteristic (ROC) curve is a plot of

statistical power against type I error, which is a useful way to com-

pare different methods in detection of significant signals. Figure 2

and Supplementary Figure S2 show the ROC curves at different

simulated epistatic heritabilities and marker densities. In general,

REMMA has higher or similar performance compared with FaST-

LMM in most cases. FaST-LMM slightly outperforms REMMA at
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the simulation of high maker density with h2
i ¼10%. Simple linear

model of PLINK has the lowest adjusted power for all simulation

studies.

To explore the impact of the number of epistatic QTN pairs on

the performance of different methods, we conducted simulations

with varied number of interaction pairs (5, 10, 100 and 500). The

results in Supplementary Figure S3 show REMMA still surpasses

other methods in all situations. It should be noted that, in these

simulations, we set a certain number of QTNs with both epistatic

and additive effects. To widely investigate the performance with dif-

ferent scenarios, we alternatively mimicked the situation where all

additive QTNs being outside the epistatic QTN regions, and the re-

sults (Supplementary Fig. S4) showed that REMMA still outper-

formed other methods.

It is notable that there exists a relatively high correlation (above

0.8) between the test statistics and the absolute values of epistatic ef-

fects in our simulations (Fig. 3A). The results suggest that we can im-

plement REMMA-scan strategy to our simulated data, which scans

the pairwise epistatic effects first and then selects the top interactions

to calculate their P-values (see detailed workflow in ‘Materials and

methods’ section). Considering the power of full REMMA after

Bonferroni correction as standard (i.e. 0.05*2/[m*(m-1)], where m is

the number of SNPs), we found that detection power of REMMA-

scan improved as the increases of quantiles of normal distribution

fitted by random selected epistatic effects, and gradually reached a

plateau at 1/10000 quantile (Fig. 3B–D). The time complexity for cal-

culating each epistatic effect is O(n) (n is the number of individuals),

while the time complexity for calculating its test statistic is O(n2). If

we discard massive interaction with low epistatic effects (about one in

ten thousand interaction pairs remain), the actual computing time

will be significantly reduced (shown in ‘Computational efficiency’

section).

We also investigated the influence of the epistatic heritability on

testing additive SNP effects. The quantile–quantile (Q–Q) plots of

four methods in testing additive SNP effects are shown in

Supplementary Figure S5A–C. It was shown that all methods except

the simple linear model control the type I error well. Even at very

high epistatic heritability, the methods only including additive kin-

ship (FaST-LMM-add and REMMA-add) will not inflate the false

positives. The ROC curves in Supplementary Figure S5D–F show

that FaST-LMM-add, REMMA-add and REMMA-epi-add have

very similar power after controlling the type I error. The results indi-

cated that additive effects could be reliably tested even when epi-

static variance was not incorporated, which was in agreement with

the study of Kruijer et al. (2015).

3.3 Application to real data
To further evaluate our method, we applied REMMA to two public

real datasets from mouse and human. The mouse dataset (Jarvis and

Cheverud, 2011) contained 1304 samples from the F10 generation

of an intercross line, and each individual was genotyped with 1470

Fig. 1. The quantile–quantile plots of different methods in testing epistatic

SNP effects. The epistatic effects were allocated to 100 SNP–SNP pairs. We

randomly selected 122 500 pairs of SNPs from regions not in linkage disequi-

librium with epistatic QTNs for each simulation and the simulation was re-

peated 100 times. Their observed P-values are expected to show a uniform

distribution. Upward departures from the expectation indicate that the meth-

ods cause spurious associations. The first three (left panel) settings are simu-

lated with 1K SNPs at epistatic heritability of 10, 30 and 60%, respectively.

The last three (right panel) settings are simulated at epistatic heritability of

60% with 10K, 100K and 300K SNPs, respectively

Fig. 2. Statistical power plotted against Type I error (in a log10scale) of differ-

ent methods in testing epistatic effects. The epistatic effects were allocated to

100 SNP–SNP pairs. The first three (left panel) settings are simulated with 1K

SNPs at epistatic heritability of 10, 30 and 60%, respectively. The last three

(right panel) settings are simulated at epistatic heritability of 60% with 10K,

100K and 300K SNPs, respectively
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SNPs. For reproductive fat pad weight in mouse, the phenotypic

variance explained by additive variance, epistatic variance and

residual variance are 0.285 6 0.047, 0.347 6 0.063 and

0.369 6 0.057, respectively. The quantile–quantile (Q–Q) plots of

genome-wide epistatic associations (Fig. 4A) indicate that both

FaST-LMM and PLINK lead to the inflated type I error in the mouse

data. REMMA did not locate any significant epistatic signals after

Bonferroni correction (0.05*2/(1470*(1470-1)¼4.63e-8) in this

study, and it indicated that there were no major epistatic genomic

regions affecting reproductive fat pad weight in mouse. We defined

top 10, 50 or 100 pair SNPs (based on their P-values) as significant

interactions and applied REMMA-scan to detect the interactions.

The number of detected interactions reached a plateau at 1% quan-

tile (Fig. 4B).

The human dataset was obtained from the Wellcome Trust Case

Control Consortium (WTCCC) (Wellcome Trust Case Control,

2007). The data contain genotypes and phenotypes of 13 990 indi-

viduals for seven common diseases: bipolar disorder (BD), coronary

artery disease (CAD), crohn disease (CD), hypertension (HT),

rheumatoid arthritis (RA), type 1 diabetes (T1D) and type 2 diabetes

(T2D). In addition, 1500 controls from the UK Blood Service

Control Group (NBS) were also included in the analysis. The quality

control procedure is presented in ‘Materials and methods’ section.

T1D has been located abundant significant interactions in previous

study (Lippert et al., 2013; Wan et al., 2010), therefore, we focused

on T1D to validate our methods. To further achieve a sufficient high

statistical power, we expanded the control set by including all other

disease cohorts and closely related individuals. The tactic has been

applied to the WTCCC data by Lippert et al. (2013) with another

LMM-based methods (FaST-LMM). We first analyzed the data with

the REMMA-scan strategy. We randomly examined 106 epistatic ef-

fects, and found a high correlation between absolute values of epi-

static effects and the corresponding P-values (-log10(P)) (Pearson’s

r¼0.85, P-value<2.2e-16). The Q–Q plots of these P-values ap-

pear to be uniform, indicating that REMMA does not inflate false

positive rate (Supplementary Fig. S6). The number of significant

interactions passing the Bonferroni correction (7.35e�13) reached a

plateau at 1/10 000 quantile (Supplementary Fig. S7). We observed

5610 significant interactions with REMMA-scan. To estimate the

performance of REMMA-scan, we ran the full REMMA and

observed 5623 significant SNP–SNP pairs that had passed the

Bonferroni corrected threshold (Supplementary Table S1). The

REMMA-scan method only missed 13 interactions. Expanding

the controls could lead to spurious associations arising from any of

the other diseases in the controls. We examined the 5623 significant

interactions in other six traits and removed the more significant epi-

static signals in any of the other diseases from the expanded analysis

for T1D, which was suggested by Lippert et al. (2013). Then, 5571

significant interactions were remained.

We observed several remarkable features from these significant

interactions for T1D, which are listed below. (i) A mass of pairwise

interactions have physical distance within 1 Mb. Epistatic inter-

actions for SNP pairs within 1 Mb distance may be false positives

due to linkage (Lippert et al., 2013; Wan et al., 2010). Therefore,

we removed such potential spurious associations, leaving 1056 well

separated SNP pairs (18.96%) for subsequent analysis. (ii) Most of

significant interactions for T1D have weak marginal effects. We cal-

culated the P-values of marginal effects for these significant inter-

actions, and observed that most of them (944/1056) had weak

marginal effects (P-value<1e-6), which is consistent with the find-

ings of Wan et al. (2010) (698 out of 789). (iii) Most of the detected

epistatic interactions are in the MHC region. Both Wan et al. (2010)

and Lippert et al. (2013) reported that the MHC region (29.8–

33.4 Mb on chromosome 6) could be a candidate interaction region

for T1D. Among the 5571 significant epistatic interactions in our

study, 5287 interactions (94.90%) are in the MHC region, where

859 interactions are well separated (Fig. 4C). (iv) A considerable

number of epistatic QTNs interact with five or more loci. Forsberg

et al. (2017) found that most epistatic QTNs interacted with one or

Fig. 3. The performance of REMMA-scan in the simulation study. The simula-

tion is based on 100 pairs of epistatic QTNs at marker density of 100K. (A)

Boxplots of Pearson correlation coefficient between epistatic effects (absolute

values) and corresponding P-values (-log10P). (B–D) The change of detection

power with increasing quantile of normal distribution fitted by random se-

lected epistatic effects at the epistatic heritability of 0.1 (B), 0.3 (C) and 0.6 (D).

The dashed line means the detection power of the full REMMA after

Bonferroni correction

Fig. 4. Genome-wide epistatic association analysis for reproductive fat pad

weight in mouse data (up panel) and T1D in WTCCC data (bottom panel). (A)

Quantile–quantile (Q–Q) plots of genome-wide epistatic associations by three

different method (PLINK, FaST-LMM and REMMA). (B) The change of de-

tected significant interactions with increasing quantile of normal distribution

fitted by random selected epistatic effects. (C) Significant interactions in the

MHC region. The upper left points (red) corresponds to significant and well

separated (>1 Mb) interactions in the MHC region, and the lower right points

(blue) corresponds to all significant interactions in the MHC region. (D)

Interacting networks of 310 pairs of genes with 12 hub genes. Hub genes

involved in ten or more interactions are highlighted with yellow
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a few loci in yeast. However, we observed 385 epistatic QTNs for

1056 well separated interactions, and 110 epistatic QTNs (28.57%)

interacted with five or more loci (Supplementary Fig. S8A,

Supplementary Table S2). We searched the protein-coding genes

within or nearest to the epistatic QTNs, and 310 unique paired

interacting genes (including 159 epistatic genes) were located

(Supplementary Table S3). Among the 159 epistatic genes, 39 genes

interacted with five or more loci (Supplementary Fig. S8B,

Supplementary Table S4). (v) We drew the epistatic network regulat-

ing T1D with Cytoscape (Doerks, 2002), and a large interacting net-

work with 12 hub genes (interacting with ten or more genes) was

established (Fig. 4D). (vi) Most of the genes interacting with five or

more other genes locate in MHC region. We observed 39 genes

interacting with five or more other genes, and 24 of them were in

MHC region.

3.4 Computational efficiency
Theoretical complexity and actual performances were utilized to

evaluate the computational efficiency of REMMA (including

REMMA-scan and full REMMA), FaST-LMM and PLINK in test-

ing epistatic SNP effects (Table 1). For FaST-LMM, REMMA or

REMMA-scan, the computational complexity for building kinship

matrix and estimating variance components is O(mn2) and O(n3),

respectively. However, the association step takes up much more

computing time. Therefore, we compared the computational com-

plexity for association step in detail. For each epistatic test of full

REMMA, computing time of preparation for interaction vector

ðzi#zjÞ, predicting epistatic effect and estimating corresponding esti-

mated error are O(n), O(n) and O(0.5n2þ1.5n), respectively.

Therefore, the overall time complexity for the step of epistatic asso-

ciation test is O(0.5Tn2þ3.5Tn), where n is the sample size and T

is the total number of pairwise tests. REMMA-scan firstly random

selects S SNP–SNP pairs to fit normal distribution and then scans

genome-wide epistatic effects, whose time complexity is linear on

the sample size. The SNP–SNP pairs passing the optimized quantile

of normal distribution (assuming K) are for subsequent analysis.

The overall time complexity is O(2Snþ2Tnþ0.5Kn2þ3.5Kn).

FaST-LMM is an exact method and estimates variance parameters

for each test. The method ingeniously takes advantage of spectral

decomposition of the kinship matrix and the computational

complexity of the optimization step is reduced from quadratic of n

to linear of n. However, the computational complexity of rotating

the LMM to the simple linear model is square of n. The overall time

complexity is shown O(3Tn2þTt1c1
2nþTt2 c1

2n). As we showed

earlier, just including the additive kinship matrix would lead to the

inflated type I error when the epistatic heritability is high. However,

the time complexity of the optimization step would be O(n3)

when the epistatic kinship matrix is included in the model, which

makes the exact epistatic test impossible. The simple linear model

by PLINK is the most efficient and its computational complexity is

linear of sample size for each test.

Actual performance for the mouse and the WTCCC datasets also

proved that REMMA was more efficient than LMM-based FaST-

LMM. REMMA was 182 times faster than FaST-LMM for the

mouse data analysis. For the WTCCC dataset with tens of thou-

sands of individuals and hundreds of thousands of SNPs, it took

5 days for REMMA using 2400 cores on Intel Xeon E5 2.2 GHz

CPU. However, FaST-LMM failed due to the maximal core limit

(2400 cores). When REMMA-scan was applied to the two datasets,

the amount of real computational time was in the same order as

PLINK.

4 Discussion

It has been widely accepted that additive genetic effects could ex-

plain most of genetic variance (Bloom et al., 2015; Maki-Tanila and

Hill, 2014), while epistasis also substantially contribute to genetic

variance of some complex traits (Wan et al., 2010; Xu, 2013).

Nevertheless, exhaustive epistasis analysis is computationally expen-

sive, especially when linear mixed model is utilized to explain re-

latedness among samples and to control population stratification. In

this study, we proposed a rapid epistatic mixed-model association

analysis method (REMMA) by linear retransformations of the gen-

omic estimated values. REMMA included both additive and epi-

static kinship matrices, and could theoretically control type I error

efficiently in examining pairwise epistatic SNPs. Simulation studies

using genotypes of the human population also demonstrated that

REMMA performed better in controlling false positives than FaST-

LMM (include additive kinship matrix only) and PLINK (simple lin-

ear kinship matrix). Application to the mouse data further con-

firmed the performance of REMMA in controlling type I error.

Both Wan et al. (2010) and Lippert et al. (2013) demonstrated

that the MHC region was the major epistatic region regulating T1D.

Almost all the T1D epistatic interactions located by REMMA were

in the MHC region, which was consistent with previous studies

(Lippert et al., 2013; Wan et al., 2010). The results proved that

REMMA was efficient in detecting epistatic signals in real datasets.

The results of Zhang et al. (2014) indicated that interacting genes

formed small interacting networks for high-density lipoprotein

(HDL), and Forsberg et al. (2017) showed similar findings of quanti-

tative traits in yeast. However, we observed a large interacting net-

work for T1D. Furthermore, a considerable number of epistatic

QTNs or genes interacted with five or more the others. Among these

hub genes, HLA-DQB1 interacted with the most number of other

genes (46 genes), and participated in immune response and antigen

processing and presentation. These results indicated that epistasis

played a nontrivial and complex role in the regulating process of

T1D.

Linear mixed models can control population stratification and

explain hidden relatedness to correct for the inflated false positives

(Kang et al., 2008, 2010; Yu et al., 2006; Zhang et al., 2010) in

Table 1. Theoretical complexity and actual computational time of

different methods in testing epistatic SNP effects

Methods Time Complexity

for Association Test

Computing Time for

Association step

Mouse Human

PLINK O(Tn) 1.2 s 10 min

FaST-LMM O(3Tn2 þ Tt1c1
2n þ Tt2 c1

2n) 79 min NA

REMMA O(0.5Tn2 þ 3.5Tn) 26 s 5 d

REMMA-scan O(2Sn þ 2Tn þ 0.5

Kn2 þ 3.5Kn)

2.3 s 24 min

Note: All computing was performed on Intel Xeon E5 2.2 GHz CPU. A sin-

gle core was used for mouse data, while 2400 cores was used for the WTCCC

data. S is the number of random selected epistatic effects; T is the total num-

ber of pairwise test; n is the number of individuals; c1 is the number of covari-

ates except interaction and c2 is the number of covariates; t1 and t2 are the

number of optimization iterations for null model (without interaction) and

full model (including interaction); K is the selected number of top interactions

to calculate the P-values.
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GWAS. Computational efficiency has improved dramatically for sin-

gle locus analysis and can deal with groups with tens of thousands

of samples genotyped millions of SNPs on standard desktop.

However, the computational complexity of association statistics for

each test is O(n2) (Yang et al., 2014) compared with O(n) by the

simple linear model, where n is the sample size. REMMA reduces

the coefficient of O(n2) to 0.5, but the computational cost for large

sample size is still high compared to PLINK. We proposed

REMMA-scan to overcome the problem. REMMA-scan firstly scans

genome-wide epistatic effects and then selects top interactions for

subsequent examination. Application to real datasets proved that

REMMA-scan had similar performance with PLINK in computa-

tional efficiency.

In our study, the randomly selected 106 SNP–SNP pairs were

merely used to develop an empirical normal distribution with their

sample mean and standard deviation. However, for extremely high

dense/imputed genotype data, 106 SNP–SNP pairs may be not

enough to accurately estimate the empirical distribution thus maybe

weakening the performance REMMA-scan. In this situation, a

larger number of randomly selected SNP–SNP pairs could be con-

sidered, or alternatively even calculation of interaction effects for all

pairs, since computational time is linear with population size. This is

only the case in the framework of REMMA-scan. The choice of ini-

tial quantile for normal distribution fitted by random selected epi-

static effects also will significantly affect performance of REMMA-

scan. The relatively lower initial quantile will increase the repetition

times, and higher initial quantile will increase the number of exam-

ination. In current study, 1/10 000 quantile is appropriate for hun-

dreds of thousands of markers. For low-density SNP chip, the full

REMMA method can work well.

Theoretically, each random SNP–SNP interaction effect should

have respective variance, and it is not the best consideration to as-

sume that the effects of all SNP–SNP interactions are sampled from

normal distribution with the identical variance. Under the frame-

work of Bayesian inference (Gianola et al., 2009; Meuwissen et al.,

2001; Xu, 2003), we can address this issue allowing SNP–SNP inter-

action variance varying with its effect size. However, the extremely

high computational demand based on Bayesian model makes it in-

feasible in practice when all the additive and epistatic SNP effects

are considered. Taking this aspect aforementioned into consider-

ation, we avoided estimating the SNP effects directly as well as

assuming different variance for different pair of SNP–SNP inter-

action under the framework of GBLUP-based strategy, i.e. estimated

SNP effects by linear retransformations of the individuals’ genomic

estimated values. The basic idea of REMMA enlightens us as to im-

proving the accuracy of individuals’ genomic estimated values to

enhance the QTN detected power. In the field of improving individ-

uals’ genomic prediction, Speed and Balding (2014) propose

MultiBLUP, which groups the SNPs into different classes based on

SNP functional annotations and effect-size variances; Legarra et al.

(2009) and Christensen and Lund (2010) propose single-step

GBLUP in the meanwhile, which can include the not genotyped indi-

viduals in the model. These methods are promising to further im-

prove the performance of REMMA.
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