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Eigen decomposition expedites 
longitudinal genome-wide association studies 
for milk production traits in Chinese Holstein
Chao Ning1†, Dan Wang1†, Xianrui Zheng1‡, Qin Zhang1, Shengli Zhang1, Raphael Mrode2 and Jian‑Feng Liu1*

Abstract 

Background: Pseudo‑phenotypes, such as 305‑day yields, estimated breeding values or deregressed proofs, are usu‑
ally used as response variables for genome‑wide association studies (GWAS) of milk production traits in dairy cattle. 
Computational inefficiency challenges the direct use of test‑day records for longitudinal GWAS with large datasets.

Results: We propose a rapid longitudinal GWAS method that is based on a random regression model. Our method 
uses Eigen decomposition of the phenotypic covariance matrix to rotate the data, thereby transforming the com‑
plex mixed linear model into weighted least squares analysis. We performed a simulation study that showed that our 
method can control type I errors well and has higher power than a longitudinal GWAS method that does not include 
time‑varied additive genetic effects. We also applied our method to the analysis of milk production traits in the first 
three parities of 6711 Chinese Holstein cows. The analysis for each trait was completed within 1 day with known vari‑
ances. In total, we located 84 significant single nucleotide polymorphisms (SNPs) of which 65 were within previously 
reported quantitative trait loci (QTL) regions.

Conclusions: Our rapid method can control type I errors in the analysis of longitudinal data and can be applied to 
other longitudinal traits. We detected QTL that were for the most part similar to those reported in a previous study in 
Chinese Holstein. Moreover, six additional SNPs for fat percentage and 13 SNPs for protein percentage were identified 
by our method. These additional 19 SNPs could be new candidate quantitative trait nucleotides for milk production 
traits in Chinese Holstein.
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(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Complex traits that require observations over multiple 
time points for the same individual are called longitudi-
nal traits. A typical example are milk production traits 
in dairy cattle, which are usually measured once every 
month during the lactation period. Analysis of such data 
provides the opportunity to investigate the genetic con-
trol of dynamic processes [1].

In genome-wide associate studies (GWAS) of milk 
production traits in dairy cattle, multiple phenotypic 
measurements for each individual are transformed into 
a single measure, such as, 305-day yield, an estimated 
breeding value (EBV) or a deregressed proof (DRP). 
Then, these pseudo-phenotypes are used as response var-
iables in the GWAS statistical model [2–4]. GWAS using 
raw phenotypes are considered as the “gold standard” [5], 
and pseudo-phenotypes can result in reduced power or 
even inflate false positive rates (FPR) for the detection of 
quantitative trait nucleotides (QTN) [6]. Furthermore, 
longitudinal GWAS that directly uses multiple pheno-
typic measurements can model time-dependent QTN 
effects. Nevertheless, longitudinal GWAS has seldom 
received much attention.

In our previous study [7], we applied random regression 
models to longitudinal GWAS. Simulation and real data 
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studies showed that the proposed methods based on lon-
gitudinal phenotypes outperformed GWAS methods that 
are based on pseudo-phenotypes, both regarding con-
trol of FPR and power of QTN detection. However, this 
method was computationally inefficient as the dimension 
of the mixed model equation increased and as the num-
ber of variance components to be estimated increased 
compared with the non-longitudinal GWAS model. It 
took about 10 days for the analysis of about 6000 indi-
viduals (about 50,000 phenotypic records) genotyped 
with 70  K SNPs even when a sparse pedigree-derived 
relationship matrix was used. The analysis could not be 
performed when a dense marker-based kinship matrix 
was used to reflect individual genetic relationships.

Eigen decomposition of the kinship matrix is a useful 
tool that can be used to speed up GWAS analysis. It was 
first proposed by Kang et al. [8], and later extended by Lip-
pert et al. [9], Zhou and Stephens [10] and Xu [11]. Here, 
we applied the algorithm to longitudinal GWAS. The rela-
tionships between individuals and between continuous 
measures were removed through a transformation pro-
cedure, which involved rotation of the data and then the 
complex random regression model was transformed into a 
weighted least squares model for each SNP test.

A series of simulation studies was carried out to eval-
uate the performance of our method. GWAS for milk 
production traits in Chinese Holstein were previously 
performed by Jiang et  al. [3] using EBV estimated from 
the first three parities. In this paper, our aim was to fur-
ther validate the results from the new method through 
the analysis of actual observed test-day phenotypes for 
milk yield (MY), fat percentage (FP) and protein percent-
age (PP) in the first three parities in a larger Chinese Hol-
stein population. In addition, we validated the results of 
the new method by comparing the detected quantitative 
trait loci (QTL) for MY, FP and PP with the tens of thou-
sands QTL from previous publications as stored in the 
QTLdb database [12].

Methods
Statistical analyses
The proposed method is based on a random regression 
model [13], and an additional fixed regression term was 
incorporated to explain the time-dependent SNP effect:

where yijn(t) is the phenotypic value of individual n at 
time point t; µi(t) is the overall mean for the i-th group 
at time t and cows calving in the same season and of 
similar age are in the same group; htdj is herd-test-
date (HTD) effect; xnm is a genotype indicator for the 

(1)
yijn(t) = µi(t)+ htdj + xnmSNPm(t)

+ an(t)+ pen(t)+ ent ,

m-th SNP which is assigned 0, 1 and 2 for genotype aa
, Aa and AA, respectively; SNPm(t) represents the time-
dependent additive SNP effect; an(t) and pen(t) are the 
time-dependent additive genetic effect and permanent 
environmental effect, respectively for individual n; ent is 
the time-independent random residual for each measure-
ment of individual n at time t. Here, µi(t), SNPm(t), an(t) 
and pen(t) can be denoted as a set of Legendre polynomi-
als or any other curve parameter (such as Wilmink poly-
nomials [14]).

where nf1, nf2, nr1 and nr2 are the orders of the corre-
sponding polynomials; ϕk(t) is the value of the k-th poly-
nomial at time t; βik and αmk is the k-th fixed regression 
coefficient for time-dependent mean and additive SNP 
effect, respectively; unk and pnk are the k-th random 
regression coefficients for additive genetic effect and per-
manent environmental effect of individual n.

The model in matrix notation is:

where y is the vector of test-day records; b is the vec-
tor of solutions for HTD and fixed regressions; u and p 
are the vectors of random regression coefficients for 
additive genetic effects and permanent environmental 
effects, respectively; X, Q and Z are the corresponding 
design matrices; e is the vector of random residuals. It is 
assumed that:

where, K is the marker-derived relationship matrix; I is 
the identity matrix; ⊗ is the Kronecker product; G is the 
variance–covariance matrix for random regression coef-
ficients of additive polygenic effects; P is the variance–
covariance matrix of random regression coefficients for 
permanent environmental effects; σ 2

e  is the residual vari-
ance. K was built with the method of VanRaden [15] as 
follows:

(2)

µi(t) =

nf1
∑

k=0

βikϕk(t), SNPm(t)

=

nf2
∑

k=0

αmkϕk(t), an(t)

=

nr1
∑

k=0

unkϕk(t), pen(t)

=

nr2
∑

k=0

pnkϕk(t),

(3)y = Xb+Qu + Zp+ e,

(4)

u ∼ N (0,K ⊗G), p ∼ N (0, I⊗ P), and e ∼ N

(

0, Iσ 2
e

)
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where pi is the second allele at locus i, and the i-th col-
umn of matrix M is:

Similar to the study of Kang et al. [16] and Zhang et al. 
[17], we initially estimated the variance components 
without including the SNP effect in the model, and then 
these estimates were applied in the model that exam-
ines whole-genome association effects of SNPs. With 
known variance components, the time-dependent addi-
tive genetic, permanent and phenotypic variances can be 
expressed as:

The phenotypic variance–covariance matrix is:

where, Q
(

K ⊗ Ĝ
)

QT reflects the covariance relation-
ship between individuals, while Z

(

I⊗ P̂
)

ZT reflects the 
covariance relationship between successive records of 
each individual. Now, we show how to transform these 
covariance matrices to diagonal matrices using Eigen 
decomposition.

We define W = Q
(

K ⊗ Ĝ
)

QT + Z(I⊗ P̂)ZT and the 
Eigen decomposition for W is W = UDUT, where D is a 
diagonal matrix containing the eigenvalues and U is the 
matrix of eigenvectors in the order of the corresponding 
eigenvalues. We rotate Eq.  (3) with UT , and the mixed 
model can be rewritten as:

where y∗ = UTy, X∗ = UTX and e∗ = UT (Qu + Zp+ e) . 
The covariance matrix of rotated phenotypic values is:

K = MM′/2
∑

pi(1− pi),

mi =







2− 2pi AA
1− 2pi Aa
0− 2pi aa

.

(5)

add(t) = [ϕ0(t), . . . ,ϕk(t), . . . ,ϕnr1(t)]

× Ĝ[ϕ0(t), . . . ,ϕk(t), . . . ,ϕnr1(t)]
T ,

perm(t) = [ϕ0(t), . . . ,ϕk(t), . . . ,ϕnr2(t)]

× P̂[ϕ0(t), . . . ,ϕk(t), . . . ,ϕnr2(t)]
T ,

and phe(t) = add(t)+ perm(t)+ σ̂ 2
e .

(6)var
(

y
)

= Q
(

K ⊗ Ĝ
)

QT + Z
(

I⊗ P̂
)

ZT + Iσ̂ 2
e ,

(7)UTy = UTXb+UT (Qu + Zp+ e),

(8)y∗ = X∗b+ e∗,

(9)

var
(

y∗
)

= var
(

e∗
)

= UT
(

Q
(

K ⊗ Ĝ
)

QT + Z
(

I⊗ P̂
)

ZT + Iσ̂ 2
e

)

U

= UTQ
(

K ⊗ Ĝ
)

QT + Z
(

I⊗ P̂
)

ZT )U +UTUσ̂ 2
e

= UTWU +UTUσ̂ 2
e .

It should be noted that W = UDUT and UUT = I,
then

Let S = D+ Iσ̂ 2
e  with S being a diagonal matrix. Then, 

Eq. (8) can be solved by weighted least squares:

From Eqs.  (11) and (12), b̂SNP is the estimated value 
of fixed regression coefficients for additive SNP effects, 
and var(b̂SNP) the corresponding variance. Therefore, the 
Wald Chi squared test for time-dependent SNP effect is:

The Bonferroni correction is used to control the rate of 
false-positive rates. Therefore, the threshold for genome-
wide significance is 0.05/ M, where M is the effective 
number of SNPs which is calculated by PLINK software 
with the command “–indep-pairwise 50 5 0.5”. This 
PLINK command produces a pruned subset of SNPs that 
are in approximate linkage equilibrium (LD) with each 
other through the application of the following steps: (1) 
it calculates LD between each pair of SNPs within a win-
dow of 50 SNPs; (2) it removes one SNP of a pair that has 
a LD greater than 0.2 until no such pairs remain; and (3) 
it shifts the window five SNPs forward and then repeats 
the procedure across the whole genome.

Data
The original study on the population of Chinese Hol-
steins consisted of 9615 genotyped animals and the 
detailed genotypic information is described in Ning et al. 
[7]. Three quantitative traits consisting of MY, FP and 
PP in the first three parities were analyzed in this study. 
The number of cows with more than five test day records 
in the three parities is in Fig. 1. The SNPs with a minor 
allele frequency (MAF) lower than 0.03 and those that 
failed the Hardy–Weinberg equilibrium (HWE) test (P 
value < 10–6) were removed for each parity, resulting in 
71,527 common SNPs for the subsequent longitudinal 
GWAS analyses.

Simulation
We performed extensive simulations to compare system-
atically the performance of the models using two different 
curve parameters (Legendre polynomials and Wilmink 
polynomials). In order to evaluate our method, another 
model, developed by Das et al. [18] that deals with human 

(10)
var

(

y∗
)

= var
(

e∗
)

= UTUDUTU +UTUσ̂ 2
e = D+ Iσ̂ 2

e .

(11)b̂ = (X∗TS−1X∗)−1X∗TS−1y∗,

(12)var
(

b̂
)

= (X∗TS−1X∗)−1.

(13)b̂T
[

var
(

b̂SNP

)]−1
b̂ ∼ χ2(nf2 + 1).
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functional traits, was also included in our study. The lat-
ter model did not include time-varied additive polygenic 
effects, which was expected to inflate type I errors for the 
cow group with population structure and cryptic relat-
edness. Our simulation was similar to that described in 
the study of Yu et al. [19]. In order to assess the null dis-
tribution of different models, 1000 random SNPs were 
tested for MY, FP and PP in the first parities. Under the 
expectation that random SNPs are unlinked to polymor-
phisms controlling these traits, the cumulative P-value 
distribution follows a uniform distribution. We tested 
a simulation of statistical power by adding an additional 
time-varied genetic effect to observed phenotypes. The 
genetic effect for the first day (Day 5) was set to 10.0, and 
the genetic effect for the day after was simulated by adding 
a value sampled from a uniform distribution of U(−1, 1). 
The simulated time-varied genetic effect is illustrated in 
Fig. 2. The cumulative effect was scaled to k = 0.04, 0.08, 
0.12, 0.16 and 0.20 times the phenotypic standard devia-
tion. The percentage (π) of the total phenotypic variation 
explained by this genetic effect can be estimated as:

where p is the allele frequency of each SNP. The genetic 
effect was assigned to 1000 random SNPs, one at a time, 
and each model was run to determine whether the effect 
could be detected with the empirical threshold (the 5th 
percentile of a null distribution).

Implementation of the software
The variance components were estimated using the DMU 
package (http://dmu.agrsci.dk/DMU/) and the longitudi-
nal GWAS analyses were performed by a custom written 
Python script available at https://github.com/chaoning/
longEigen.

π =
2p(1− p)k2

1+ 2p(1− p)k2
,

Results
Simulation studies
The cumulative P-value distribution of random SNPs are 
in Fig.  3a–c. Overall, the Legendre model showed good 
control of type I errors. The Legendre-NP model (Leg-
endre model that does not include time-varied poly-
genic effects) should result in large type I errors. For PP, 
the Wilmink model had a convergence problem in the 
estimation of variance components, which resulted in a 
type I error with non-convergent variance component. 
The empirical power in Fig. 3d–f showed that Legendre 
and Wilmink models had similar adjusted power, but it 
greatly exceeded that of the Legendre-NP model.

Time‑dependent variances
The additive genetic, permanent environmental and phe-
notypic variances across the lactation period for the first 
three parities are in Fig.  4. Additive genetic variances 
were higher at the beginning, then dropped sharply to 
the lowest point before day 50, and increased during the 
remaining lactation. Permanent environment and pheno-
typic variances share very similar pattern changes, since 
the former is the major component of the latter. These 
variances were higher at the beginning and decreased 
thereafter, and then a relatively long plateau occurred 
with the exception of a slight increase at the end of lacta-
tion for FP and PP. Furthermore, the variances increased 
from parity to parity.

Significant SNPs
We analyzed the MY, FP and PP for three parities with 
the Legendre model since it is able to control type I 
errors and showed good convergence in the estima-
tion of variances for all traits. After running the PLINK 
software with the command “–indep-pairwise 50 5 0.5”, 
45,573 pruned SNPs in approximate linkage equilibrium 
with each other were retained. Therefore, the significant 
threshold was 0.05/45,573 = 1.097E − 6 after Bonfer-
roni correction. In total, we detected 84 genome-wide 

Fig. 1 Number of dairy cows for the first three parities used in longi‑
tudinal GWAS

Fig. 2 Time‑varied simulated additive genetic effect for random SNPs

http://dmu.agrsci.dk/DMU/
https://github.com/chaoning/longEigen
https://github.com/chaoning/longEigen
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significant SNPs by our method. The Manhattan plots 
of − log10(p) in Fig.  5 reveals four peaks on respec-
tively chromosomes 5, 6, 14 and 20, which influence 
milk production traits in Chinese Holstein. The peak 
on chromosome 14 influences all three traits, and the 
well-known DGAT1 (diacylglycerol O-acyltransferase 1) 
gene, reported to be a major gene affecting milk produc-
tion traits [20], is located within this region. The detailed 
information of all significant SNPs for milk yield (MY), 
fat percentage (FP) and protein percentage (PP) is pro-
vided in Table S1 [see Additional file 1: Table S1], includ-
ing their positions on the genome, P values for the three 
parities, known genes within a 100-kb region around 
the SNP, and QTL ID for nearest QTL. We obtained 
QTL information from the animal QTLdb [12] and only 
focused on the QTL that were identified by the asso-
ciation analysis method and had relatively narrow and 
accurate estimated intervals. The key findings are sum-
marized as follows.

For milk yield (MY), we found three significant SNPs 
for the first parity and none for the second and third pari-
ties. One of these SNPs is located within the DGAT1 gene 
and all significant SNPs are within the reported QTL for 
MY.

For fat percentage (FP), 65 significant SNPs were iden-
tified, of which, 64 showed association in the first par-
ity, while an additional SNP was identified for both the 
second and third parities. Furthermore, five of the 65 
SNPs are located between 93.48 and 94.27 Mb on chro-
mosome 5 and the others are within a 4.68-Mb segment 
(1.40–6.10  Mb) on chromosome 14. We mapped these 
significant SNPs to the animal QTLdb [12] and discov-
ered that 59 were located in the reported QTL for FP. The 
remaining SNPs were 16 to 107 kb away from the nearest 
reported QTL.

For protein percentage (PP), we identified 28 SNPs, of 
which 27 were identified for the second parity and an 
additional SNP identified for the first parity. Further-
more, nine SNPs are located between 1.65 and 2.06 Mb 
on chromosome 14 and 15 SNPs are clustered within a 
region between 31.93 and 34.82 Mb on chromosome 20. 
We found that 15 of the significant SNPs were within the 
regions that were previously reported to harbor QTL for 
PP, while the 13 remaining SNPs are 4 to 1.724 kb away 
from the nearest QTL.

In total, 65 of the 84 significant SNPs were within 
reported QTL regions. In order to evaluate whether 
the significant SNPs were located in a QTL region by 

Fig. 3 Cumulative P‑value distributions and empirical power of different models. a–c Cumulative P‑value distributions using random SNPs for MY, 
FP and PP. Under the assumption that random SNPs are unlinked to these traits, models that appropriately control for type I errors should show 
a uniform distribution of P values. d–f Empirical power of different models for MY, FP and PP. The empirical threshold was determined as the 5th 
percentile of a null distribution
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chance, we conducted an enrichment study similar to the 
odds ratio method that is commonly used in case–con-
trol studies. According to the reported QTL for MY, FP 
and PP, the bovine whole genome was divided into QTL 
regions and non-QTL regions. The QTL regions occu-
pied 6.25% of the genome (168,709,938 bp). Thus, among 
the 84 random SNPs, about five (84*6.25%) were located 
in QTL regions by chance. The enrichment coefficient 
was calculated as the number of significant SNPs per bp 
in a QTL region versus the number of significant SNPs 
per bp in a non-QTL region. The enrichment coefficient 
is 1 if the significant SNPs were randomly located across 

the whole genome. In our study, the enrichment coeffi-
cient was equal to 54.7 (p-value < 2.2e-16).

The time-varied effects of SNP ARS-BFGL-NGS-4939 
(within the DGAT1 gene region) for three traits in the 
first three parities are in Fig. 6. Alleles of this SNP are G 
and C, with frequencies of 0.209 and 0.791, respectively. 
In our study, genotypes GG, GC and CC were coded 0, 1 
and 2, respectively. In general, the time-varied effects for 
SNP ARS-BFGL-NGS-4939 shared very similar chang-
ing patterns in the three different parities. The genotype 
CC with the highest frequency had a greater genotypic 
value compared to genotypes GC and CC for the MY 

Fig. 4 Time‑dependent additive genetic (left), permanent environmental (middle) and phenotypic (right) variances for MY (top), FP (middle) and 
PP (bottom) across the lactation period
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trait, whereas the opposite was observed for the FP and 
PP traits.

Computational efficiency
Eigen decomposition could expedite longitudinal GWAS 
in theory and practice. From Eqs.  (11) and (12), we can 
see that matrix multiplication between the inverse of 
the phenotypic covariance matrix (S−1) and the design 
matrix for fixed effects (X) has the largest impact on 
computational efficiency. Eigen decomposition can rotate 
the dense phenotypic covariance matrix into a diago-
nal matrix, and theoretical computational time can be 

improved approximately N  times, where N  is the total 
number of observed records. In practice, our method 
could complete the analysis in 1 day with known vari-
ance components on a Linux computer of 24 cores. How-
ever, only 50 SNP tests could be completed under these 
conditions.

Discussion
In this study, we performed longitudinal GWAS for three 
milk production traits in the first three parities of Chi-
nese Holstein. To our knowledge, this is the first GWAS 
for milk production traits using test-day records as 

Fig. 5 Manhattan plots of –log10(P) for MY (a, b, c), FP (d, e, f) and PP (g, h, i) of the first (a, d, g), second (b, e, h) and third (c, f, i) parities

Fig. 6 The time‑varied effects of SNP ARS‑BFGL‑NGS‑4939 (within the DGAT1 region) for MY (left), FP (middle), and PP (right) in the first three parities
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response variable. In addition, a marker-derived genomic 
relationship matrix was included to reflect the relation-
ship between individuals. Compared with the pedigree-
based relationship matrix, which was used in previous 
studies [3, 4], the marker-derived genomic relationship 
matrix is more precise for specifying the actual rela-
tionships between individuals. For example, differences 
among full siblings cannot be distinguished with the ped-
igree-based compared to the marker-derived genomic 
relationship matrix. However, a dense marker-derived 
matrix usually results in a strong increase in computa-
tional burden. Several effective methods [8–10, 16] have 
been proposed to overcome this problem for non-lon-
gitudinal traits, i.e., one record per individual. Here, we 
expanded the Eigen decomposition technique to longitu-
dinal GWAS, and the analysis could be completed within 
1 day for each trait with known variances.

Several studies have reported that additive genetic, 
permanent environmental and phenotypic variances 
for milk production traits in dairy cattle vary with days 
in milk. Strabel et  al. [21] reported the general patterns 
for the three variances in Polish Black and White cattle 
and showed that they were higher at the two extremes of 
lactation and lower in the middle part. Zavadilova et al. 
[22] reported a similar dynamic pattern in Czech Hol-
stein cattle. However, El Faro et al. [23] showed that the 
estimated variances decreased continuously during the 
first lactation for Brazilian Caracu heifers, while Gebrey-
ohannes et al. [24] observed a continuous increase in an 
Ethiopian dairy cattle population. In spite of these differ-
ent results for various dairy cattle populations, the over-
all dynamic pattern reveals that the expression of genes 
and the influence of environment on phenotype are time-
dependent. Acknowledging this fact and analyzing the 
data with dynamic models will help to better understand 
the genetic control of longitudinal traits.

Here, we presented the advantage of the Eigen decom-
position approach for dealing with longitudinal GWAS 
for milk production traits in Chinese Holstein. The lon-
gitudinal GWAS method can be also applied to other 
kinds of longitudinal data, such as daily gain in pig and 
egg weight in chicken. Furthermore, Eigen decomposi-
tion can be generalized to different linear mixed models. 
For a GWAS model with only one variance component 
other than the error variance, we can expedite the speed 
of the estimation of variance components to enhance the 
computational efficiency as in EMMA (efficient mixed-
model association) [8]. If we include additional variance 
components, such as non-additive genetic variances 
and permanent environmental variance, into the GWAS 
model, a two-step strategy as described in our study can 
be used. First, the variance components are estimated 
only once in the model not including the SNP effect, and 

second Eigen decomposition of merged variances other 
than independent error variances is applied to improve 
the performance of GWAS in a more general way.

Biological curve parameters of Wilmink polynomi-
als can also be used in the longitudinal analysis of milk 
production traits [14]. However, the Wilmink model can 
result in a convergence problem in the estimation of vari-
ance components due to higher correlations between the 
estimated regression coefficients. Legendre polynomi-
als can reduce the correlations and make no assumption 
about the shape of the curve; therefore, they are popular 
in dairy cattle breeding [25, 26]. The orders of Legendre 
polynomials will influence the performance of our lon-
gitudinal GWAS model. Akaike information criterion 
(AIC) or cross-validation are usually used to determine 
the orders of these functions in other longitudinal studies 
[18, 27]. However, it is computationally expensive to esti-
mate the variances of a random regression model with 
a dense marker-derived genomic relationship matrix. 
In this study, we applied fourth-order Legendre polyno-
mials to all time-dependent effects, which is preferred 
in genetic evaluation methods for dairy cattle [28, 29]. 
The simulation study based on the real dairy cattle data-
set indicated that our longitudinal GWAS model with 
fourth-order Legendre polynomials could control the 
type I error in our study population. However, this is not 
a universal principle, and the optimal orders of the Leg-
endre polynomials should be estimated for other longi-
tudinal data.

Jiang et  al. [3] performed GWAS for milk production 
traits in Chinese Holstein using EBV for 2093 cows that 
were estimated based on a multiple trait random regres-
sion test-day model. In general, our method identified 
fewer significant SNPs for the corresponding traits. In 
addition to different statistical methods, the main reason 
is that the marker-derived genomic relationship matrix 
was used to further control the type I error. Furthermore, 
the fact that similar and narrower peak regions were 
obtained in our study compared to the previous one [3] 
validates this method and indicates that it could be a more 
accurate approach for future studies. We identified 84 sig-
nificant SNPs for three traits, of which 65 were located 
within known QTL regions. Among the remaining SNPs, 
six significant associations for FP were located within 
110  kb of QTL reported by Lehnert et  al. [30], and this 
region can represent a new potential QTL for FP. Thirteen 
additional SNPs for PP were 4 to 1724 kb away from the 
nearest QTL, and we extended the QTL region for PP.

Conclusions
In summary, we propose a rapid GWAS method for lon-
gitudinal data. In a situation where variances are known, 
the GWA analysis could be completed within one day 
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for thousands of individuals with tens of thousands of 
records genotyped with the 70  K chip. We applied our 
method to the analysis of milk production traits in Chi-
nese Holstein. The performance with simulation and real 
data showed that our method could control the type I 
error. We located 84 significant SNPs by our methods of 
which 65 were within reported QTL regions. Nineteen 
new SNPs were identified, which could be new candidate 
QTN for milk production traits in Chinese Holstein.
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