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Today, the rapid increase in phenotypic and genotypic information is leading to larger

mixed model equations (MMEs) and rendering genetic evaluation more time-consuming.

It has been demonstrated that a preconditioned conjugate gradient (PCG) algorithm

via an iteration on data (IOD) technique is the most efficient method of solving

MME at a low computing cost. Commonly used software applications implementing

PCG by IOD merely employ functions from the Intel Math Kernel Library (MKL) to

accelerate numerical computations and have not taken full advantage of the multicores

or multiprocessors of computer systems to reduce the execution time. Making the most

of multicore/multiprocessor systems, we propose PIBLUP, a parallel, shared memory

implementation of PCG by IOD to minimize the execution time of genetic evaluation.

In addition to functions in MKL, PIBLUP uses Message Passing Interface (MPI) shared

memory programming to parallelize code in the entire workflow where possible. Results

from the analysis of the two datasets show that the execution time was reduced by more

than 80% when solving MME using PIBLUP with 16 processes in parallel, compared to

a serial program using a single process. PIBLUP is a high-performance tool for users to

efficiently perform genetic evaluation. PIBLUP with its user manual is available at https://

github.com/huiminkang/PIBLUP.

Keywords: genetic evaluation, Message Passing Interface, Intel Math Kernel Library, preconditioned conjugate

gradient, iteration on data, large-scale, multicore/multiprocessor

INTRODUCTION

Genetic evaluation is widely accepted as an efficient method to improve genetically complex
traits and is increasingly applied to the breeding programs of animals and plants. Solving
mixed model equations (MMEs) is a major part of genetic evaluation. Statistical models
used in genetic evaluations are usually complicated, which include either multiple correlated
effects within the same trait or multiple traits analyzed simultaneously. An example of
the former is random regressions nested within an additive genetic effect or within a
permanent environmental effect in test-day models for milk production traits (Schaeffer
et al., 2000). Examples of the latter are multiple-trait analyses of type traits (Tsuruta
et al., 2011), fertility traits (Liu et al., 2008), and a multiple-trait multiple-lactation
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test-day model for milk production traits (Schaeffer et al., 2000).
Moreover, with genomic selection, the relationship matrix based
on markers becomes denser than that based on pedigree. All the
aspects mentioned above make solving MMEs a time-consuming
task. In animal breeding, large MMEs are usually solved using
a preconditioned conjugate gradient (PCG) by iteration on data
(IOD). PCG is easy to implement and has a superior convergence
rate compared to other commonly used iterative methods, such
as the Gauss–Seidel method (Tsuruta et al., 2001) and the Gauss–
Seidel second-order Jacobi method (Strandén and Lidauer, 1999).
Incorporating the IOD technique into the PCG algorithm avoids
the high memory consumption of storing a large coefficient
matrix of MME and enables the implementation of large-scale
genetic evaluation (Strandén and Lidauer, 1999).

With the accumulation of phenotypic and genomic data,
current genetic evaluations are more time consuming than those
that existed before the genomic era, especially in situations
where the aforementioned complicated models are employed.
Parallel computing is a practically workable solution to this
problem in which a computational task is typically divided into
several similar, independent subtasks whose results are combined
afterwards.

The Intel Math Kernel Library (MKL) (https://software.
intel.com/en-us/intel-mkl) provides optimized and threaded
math functions to obtain immediate performance benefits.
Among the currently available software packages, as far
as we know, BLUPF90 (Misztal et al., 2002) and DMU
(Madsen and Jensen, 2013) employed MKL to speed up
computations.

When the entire MME system is stored in main memory,
almost all the steps of the PCG algorithm can be parallelized
using math functions in the MKL library. However, with the
implementation of an IOD technique, one of the most time-
consuming parts can no longer be parallelized with MKL. In
this case, Message Passing Interface (MPI) (MPI Forum, 2012)
provides a good way to implement parallel programming with
the computational load manually partitioned across multiple
processes.

Taking full advantage ofmulticore/multiprocessor systems, we
present PIBLUP, a C implementation of PCG by IOD using both
MPI parallel programming and MKL math functions in order
to reduce the execution time of genetic evaluations and facilitate
large-scale analyses. PIBLUP with its user manual is available at
https://github.com/huiminkang/PIBLUP.

METHODS

PIBLUP is written in C and is supported on a Linux operating
system with a shared memory architecture. PIBLUP is driven
by a parameter file, where the MME information is specified in
sections defined by keywords (see examples in user manual at
https://github.com/huiminkang/PIBLUP).

The parallel version of PIBLUP is programmed based on an
optimized serial version. The workflows of these two versions
(shown in Figure 1) are the same, except that MPI parallel

programming was not used in the serial version. Details of the
workflow are explained as follows.

Statistical Model Construction
Based on the specified parameter file, PIBLUP constructs the
statistical model used in genetic evaluation. Then, (co)variance
matrices for random effects are inverted to facilitate the following
computations. To be more user-friendly, PIBLUP renumbers
categorical variables in data files, such as phenotype file, pedigree,
and genotype file, permitting the use of raw data including
alpha-numeric characters in input files.

Subsequently, inverses of kinship matrices are constructed,
including the inverse of a numerator relationship matrix (A)
based on pedigree (Henderson, 1975, 1976), the inverse of a
genomic relationship matrix (G) based on genomic information
(VanRaden, 2008) and the inverse of a hybrid relationship matrix
(H) of A and G (Legarra et al., 2009; Christensen and Lund,
2010). In addition to these commonly usedmatrices, PIBLUP can
leverage user-specified kinship matrices (their inverse matrices
stored in input files) alternatively.

In PIBLUP, the G matrix is constructed utilizing the first
method of VanRaden (2008) as follows:

G =
(S− P)(S− P)′

2
n∑
j=1

pj(1− pj)

, (1)

where S is a matrix of SNP genotypes for each individual, P is a
matrix of two times the observed allele frequency of the second
allele p at locus j (pj), and n is the number of SNPs used in the
construction of G. In PIBLUP, the Gmatrix is explicitly inverted.
PIBLUP has two options to ensure that G is invertible. First, a
small arbitrary value (specified in the parameter file, e.g., 0.01)
can be added to the diagonals ofG. Moreover, the nearest positive
definite matrix of G could be computed using Higham’s method
(Higham, 2002) (specified in the parameter file).

The inverse of the H matrix in PIBLUP is constructed as
follows (Legarra et al., 2009; Christensen and Lund, 2010):

H−1 = A−1 +

[
0 0

0 τ [(1− w)G∗ + wA22]
−1

− ωA−1
22

]
, (2)

whereG∗ = β G+α with α and β are calculated from the system
of equations:

{
Avg

(
diag (G)

)
β + α = Avg

(
diag (A22)

)

Avg
(
offdiag (G)

)
β + α = Avg

(
offdiag (A22)

) , (3)

where Avg
(
diag (B)

)
and Avg

(
offdiag (B)

)
represent the average

values of diagonal and non-diagonal elements of matrix B,
respectively (Christensen et al., 2012). Matrix A22 is the partition
of A and subscript 2 represents genotyped individuals. The
adjustment of G is to avoid the potential incompatibility in scale
between G and A22. Three parameters τ , w, and ω, whose values
are specified by users, are set to achieve better accuracy and lower
bias by fine-tuning (Tsuruta et al., 2011; Harris et al., 2012).
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FIGURE 1 | Workflow diagram for PIBLUP. The mixed model equation to be

solved is Cx = b. The preconditioner matrix is M, a block diagonal matrix

(Continued)

FIGURE 1 | formed from the coefficient matrix C. Implementation of steps

marked by “*” employs math functions in Intel Math Kernel Library. Code in

parts of M−1 and b constructions and PCG are parallelized using Message

Passing Interface shared memory programming. Steps in cyan color are

executed by all the processes to reduce runtime, and those in white are

executed by the master process. All the processes execute the two

conditional statements in diamonds.

Preconditioner Construction in Parallel
Let the MME be:

[
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z+ G−1 ⊗ G−1
0

] [
f̂

û

]
=

[
X′R−1y

Z′R−1y

]
. (4)

The coefficient matrix can be partitioned into two parts:

[
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z+ G−1 ⊗ G−1
0

]

=

[
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z

]
+

[
0 0

0 G−1 ⊗ G−1
0

]
, (5)

where the first part, the least square part, is constructed based
on observations and the second part is based on the inverse of
kinship matrix G−1 and the inverse of the (co)variance matrix
for the random effect G−1

0 . X and Z are the design matrices
of fixed effects f and random effects u respectively, R is the
residual (co)variance matrix, and ⊗ is the Kronecker product. If
the random effect is not a genetic effect, G−1equals the identity
matrix I.

A block diagonal preconditioner M based on the coefficient
matrix is used in PIBLUP to improve the convergence rate of
PCG. The blocks ofM are due to traits, resulting in dense blocks
of the t × t matrix, where t is the number of traits. Both M and
M−1 are constructed using MPI shared memory programming.

During the construction of M, PIBLUP stores the upper
triangles of blocks in memory. A region of shared memory is
allocated for M by a master process. All processes can access
it without communication via a network. According to the
partition of the coefficient matrix, the construction ofM involves
two tasks. All processes participate in both tasks. In the first task,
the translated values are added to their corresponding positions
based on each phenotypic record. All the processes read the
phenotype file simultaneously, but each process calculates the
addend and performs addition operations for specific positions.
PIBLUP assigns at least one position to each process and tries to
ensure an even distribution of the number of addition operations.
The second task is adding values to M for each level of random
effects. PIBLUP distributes work among processes according to
the total number of levels and the number of processes.

After M has been constructed, its inverse is computed
by inverting each diagonal block it contains. This is also
implemented by all of the processes in parallel, with each
process computing inverses for nearly an equal number of
blocks. The inverse is calculated using the MKL math functions

Frontiers in Genetics | www.frontiersin.org 3 August 2018 | Volume 9 | Article 226

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Kang et al. PIBLUP

LAPACKE_dgetrf and LAPACKE_dgetri. Finally, M−1 is stored
in disk.

While phenotypic records are processed in the construction
of M, all processes construct the right-hand side (b) of MME in
a similar manner in parallel. Specifically, b is stored in the region
of shared memory allocated by the master process. All processes
participate in adding translated values to their corresponding
positions in b based on phenotypic records. Processes handle the
same positions that were assigned in the construction of the least
square part ofM.

Implementation of PCG by IOD in Parallel
As shown in Figure 1, PIBLUP begins to solve MME using
PCG by IOD after M−1 and b have been constructed. The
parallelization of this process is realized using MPI shared
memory programming and MKL functions (indicated by “∗” in
Figure 1). All the processes execute the steps in blue in Figure 1

in parallel to accelerate the computational speed.
With an IOD technique (Strandén and Lidauer, 1999), the

coefficient matrix of MME (C) does not require to be stored
in memory. Therefore, the memory consumption is dominated
by five vectors, i.e., right-hand side vector b, residual vector r,
search direction vector d, solution vector x, and vector v. With
MPI shared memory model, these five vectors are stored in the
shared memory of the master process and can be accessed by all
processes. Each process only need to allocate an area of shared
memory to store the intermediate vector i, which is used in the
calculations of Cd and Cx.

The master process computes the inner products, i.e., bTb,
rTd, dTv, rTv, and rTr, using the MKL function cblas_ddot.
All the processes participate in the computation of M−1r,
using the MKL function cblas_dsymv. As M−1 is a block
diagonal matrix, each process performs an equal number of
multiplications of blocks and vectors.M−1is read from disk each
time.

The heaviest computation step in PCG is the multiplication of
the coefficientmatrix (C) and vector d or x. As shown in Equation
[5], the C matrix can be partitioned into two parts. After being
read from disk, the jth phenotypic record is translated into xj and
zj. Therefore,

Cd =

[
X′R−1X X′R−1Z

Z′R−1X Z′R−1Z

]
d+

[
0 0

0 G−1 ⊗ G−1
0

]
d

=

q∑

j=1

wjR
−1
j w′

jd+

[
0 0

0
(
G−1 ⊗ IG−1

0

) (
IG−1 ⊗ G−1

0

)
d

]
,

(6)

where w′
j =

[
x′j z

′
j

]
, q is the number of records, and IG−1

0

and IG−1 are identity matrices of orders equal the orders of G−1
0

and G−1, respectively. The products tj = wjR
−1
j w′

jd and s =(
G−1 ⊗ IG−1

0

) (
IG−1 ⊗ G−1

0

)
d are both calculated from the right

to the left (Strandén and Lidauer, 1999), i.e.,

tj1 = w′
jd; tj2 = R−1

j tj1; tj = wjtj2, (7)

and

s1 =
(
IG−1 ⊗ G−1

0

)
d; s =

(
G−1 ⊗ IG−1

0

)
s1. (8)

As phenotypic records are independent of each other, all
processes read nearly equal numbers of records and calculate
the corresponding tj. Similarly, the computations of s1 and s

are assigned to processes according to the number of levels of
random effects and the number of non-zero elements in G−1,
respectively.

In each process, the values of vectors tj and s1 are stored in the
intermediate vector i. Then, vector i for tj is summed up across
processes and stored in vector v in the master process. The value
of i for s from each process is directly added to v in the master
process, as different processes cannot have concurrent addition
operations on the same position in v.

Convergence Criterion
The convergence criterion used in PIBLUP is the relative average
difference between the right-hand side and left-hand side as in
the study of Tsuruta et al. (2001):

c =
‖b− Cx‖2

‖b‖2
, (9)

where
∥∥y

∥∥ is the length of vector y and
∥∥y

∥∥2 =
∑
i
y2i . The b–

Cx in the numerator is approximated by rk = rk−1 – αv, where
k means the kth round. The residual vector r is updated using
the exact formula r = b – Cx every 100 rounds to eliminate
accumulated rounding errors.

Application
We evaluated the performance of PIBLUP using two datasets
of different sizes, and two commonly used statistical models in
genomic selection were employed.

In the first dataset, there were 7,556 individuals with 72,507
markers genotyped. A total of 5,334 individuals among them
have de-regressed proofs (DRPs) and corresponding weights
(Garrick et al., 2009) for at most three traits. We used multi-
trait genomic best linear unbiased prediction (GBLUP) method
(VanRaden, 2008) to predict genomic estimated breeding values
(GEBV):

y = µ1n + Zg+ e, (10)

where y is a vector of DRP of three traits, µ is the overall mean,
1n is a vector of n ones, g is the vector of additive genomic effects
with a distribution of N (0,G⊗ G0), Z is the corresponding
incidence matrix, and e is the vector of random residuals with a
distribution of N (0,D⊗ R). G is a genomic relationship matrix.
D is a diagonal matrix with diagonal elements 1

weight
. G0 and R

were the (co)variance matrices for additive genomic effects and
residuals, respectively.

The second dataset contained test-day records of three
milk production traits in the first three lactations of dairy
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cattle. There were 3,571,661 individuals in pedigree and
7,847,612 test-day records in the phenotype file. Genotypic
data from the first dataset were included in this dataset.
The statistical model used was the multiple-trait multiple-
lactation single-step random regression model (Kang et al.,
2016):

y = X1b1 + X2b2 +Qa+ Zp+ e, (11)

where y is the vector of observations, b1 is the vector of the
herd-test date-parity effect, b2 is the vector of fixed regressions
for calving age-season-parity effect, a and p are vectors of
random regressions for additive genetic effect and permanent
environmental effect, X1, X2, Q, and Z are design matrices of
b1, b2, a, and p, respectively; and e is the vector of residuals.
We adopted Legendre polynomials of the third order for random
regressions for permanent environmental effect and Legendre
polynomials of the fourth order for fixed and additive genetic
regressions. It was assumed that

var



a

p

e


 =



H⊗ G0 0 0

0 I⊗ P 0

0 0 R


 , (12)

where G0 (45 × 45) and P (36 × 36) are (co)variance matrices
of additive genetic and permanent environmental regression
coefficients, and H is the aforementioned hybrid relationship
matrix of A and G, with τ = 1.6, w = 0.1, and ω = 0.5. The
lactation was divided into four periods, and residual (co)variance
matrices R were assumed to be the same within each period.

Tests were performed on a Linux server, with a shared
memory architecture and a total memory size of about 529 GB.
It had 64-bit Intel Xeon E7-4820 processors, each with a base
frequency of 2.00 GHz.

RESULTS AND DISCUSSION

The primary motivation for developing PIBLUP lies in reducing
the runtime of genetic evaluation by using several concurrent
processes. We have compared the EBV or GEBV predicted using
PIBLUP and DMU in analyses of all the datasets we obtained.

The correlation between results of the two software packages was
1.00 in all the cases. Table 1 shows the runtime of the serial and
parallel versions of PIBLUP in the analyses of the two datasets,
for three different parts in Figure 1. For each part of PIBLUP,
the program using four processes was faster than either program
that run with one process, except during the construction of
M−1 and b for dataset 1. This exception occurred owing to the
different speeds of file management functions used in the serial
version and the parallel version. The effect was significant when
the total runtime was short in constructions of M−1 and b for
dataset 1 (0.09min). Although the part of the model construction
in PIBLUP merely employed MKL math functions to accelerate
the speed of the matrix inversion (Figure 1), the time saved
was about 60 and 40% for datasets 1 and 2, respectively. This
can be explained by the fact that the computational load in
this part was mainly due to the inversion of G matrix, which
is reflected by the time spent in the kinship matrix inversion
step accounting for about 90 and 66% of the total runtime for
datasets 1 and 2, respectively. Solving MME by PCG is the
most time-consuming part, as many rounds of iterations are
required to reach convergence in practical applications. With
the convergence criterion of 10−13, the rounds of iterations
required were 2,252 and 628 for datasets 1 and 2, respectively.
For this part, the parallel version with four processes used 31
and 49% of the runtime of the serial program for datasets 1
and 2, respectively. One reason why the ideal percentage of
25% was not achieved was due to some existing overhead, such
as synchronization. Moreover, for dataset 2, the number of
equations in MME during the analysis was 185 million, which
is significantly greater than that in dataset 1. Therefore, the effect
of the aforementioned different file input/output speeds of the
serial and parallel versions of PIBLUP was more significant in the
analysis of dataset 2, as more data were read from disk.

In genetic and genomic evaluations, BLUPF90 (Misztal et al.,
2002) and DMU (Madsen and Jensen, 2013) are the two most
commonly used software packages. As the blupf90 program from
BLUPF90 package and DMU4 program from DMU package
are well developed and freely available, we compared the total
runtime of PIBLUP (parallel version) with these two programs
in the analysis of dataset 1. Table 2 shows the total runtime
of different software packages run with a single process and
four processes. With the maximum number of processes set to
one, the runtime of PIBLUP, blupf90 and DMU4 was about 51,

TABLE 1 | Runtime (min) of different parts (model construction, M−1 and b constructions, and PCG) in PIBLUP in analyses of datasets 1 and 2.

Programa Dataset 1b Dataset 2c

Model construction M−1 and b constructions PCGd Model construction M−1 and b constructions PCGd

Serial 21.97 0.09 0.61 36.56 14.45 87.21

Parallel (1) 21.97 1.56 0.62 36.56 17.36 98.76

Parallel (4) 8.63 0.41 0.19 22.57 5.47 42.61

aSerial version (Serial), parallel version of PIBLUP with a single process (Parallel (1)) and four processes (Parallel (4)) were tested.
bThere were 22,671 equations in mixed model equations for analysis of dataset 1.
cThere were 185,048,637 equations in mixed model equations for analysis of dataset 2.
dPCG was iterated 50 rounds for easy comparison.
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TABLE 2 | Runtime (min) of PIBLUP, BLUPF90 and DMU in the analysis of

dataset 1.

No. of processes PIBLUPa BLUPF90b DMUc

1 51.49 84.97 58.18

4 17.61 49.87 38.79

aParallel version of PIBLUP.
bThe blupf90 program from BLUPF90 package was employed.
cThe DMU4 program from DMU package was employed.

85, and 58min, respectively. According to the user manual of
BLUPF90, PCG is the default solver in blupf90 and the fastest
one. We chose PCG as the solver when blupf90 was employed.
For dense MME, as those in the analysis of dataset 1, DMU4 uses
LAPACK subroutines to reach a solution. Therefore, the different
runtime of the three software packages may result from the
different solving methods they employ. Moreover, as previously
mentioned, it is time consuming to construct the inverse of G
matrix in the analysis of dataset 1. DMU4 saved a larger amount
of time because it read in a file containing the inverse of G
matrix instead of constructing it on its own. In contrast, PIBLUP
and blupf90 computed the inverse of G matrix based on the
genotypes of SNPs. In addition, blupf90 consumed some time
to calculate certain statistics of the G matrix and performed
some quality control. Considering the factors mentioned above,
the differences between the runtime of PIBLUP, blupf90 and
DMU4 are acceptable. In contrast to PIBLUP, which uses the
IOD technique, blupf90 and DMU4 set up equations in memory.
Therefore, blupf90 and DMU4 are not suitable to solve very large
MMEs, such as the MME in the analysis of dataset 2.

As presented in Table 2, runtime was reduced for all the
three programs when the maximum number of processes
increased from one to four. The execution time was reduced
by approximately 66%, 41%, and 33% for PIBLUP, blupf90
and DMU4, respectively. To use multiple processes in parallel,
PIBLUP employs both MPI parallel programming and MKL
math functions (Figure 1), but blupf90 and DMU4 merely
employ MKL math functions. With MPI, PIBLUP can further
manually partition computational load across multiple processes
(Figure 1). Therefore, PIBLUP saved a larger percentage of time
compared to blupf90 and DMU4 when four processes were
available. As aforementioned, not all steps in the workflow can
be parallelized, and computing the inverse of G matrix is time
consuming. Intel MKL provides parallelized math functions to
compute the inverses of matrices. Program using these functions
can reduce the runtime efficiently. As DMU4 doesn’t construct
the inverse of G matrix, the percentage of time saved for DMU4
with four processes was less than that for PIBLUP and blupf90.

Figures 2, 3 show that the runtime of each part of PIBLUP
decreased as the number of processes increased. For the last
two parts of PIBLUP, the execution time was reduced by more
than 70% when 16 processes were used in parallel. As shown in
Figure 1, not all the steps were parallelized, particularly those
in the first step. As stated in Amdahl’s law (Amdahl, 1967), the
sequential steps limiting the runtime can be reduced. Therefore,
the percent of runtime saved in the first part was smaller than
that of the other two parts. When considering all the parts of

FIGURE 2 | Relative runtime of each part (model construction, M−1 and b

constructions, and PCG) in parallel version of PIBLUP against runtime of their

serial counterparts by the number of processes in analyses of dataset 1. In

M−1 and b constructions, relative time was calculated against the parallel

version using a single process. Model, model construction; M−1 and b: M−1

and b constructions.

FIGURE 3 | Relative runtime of each part (model construction, M−1 and b

constructions, and PCG) in parallel version of PIBLUP against runtime of their

serial counterparts by the number of processes in analyses of dataset 2.

Model, model construction; M−1 and b: M−1 and b constructions.

PIBLUP, thread managements hindered the execution time from
decreasing linearly with the number of processes.

As computer systems with a shared memory architecture are
common and the number of cores currently continue to increase,
PIBLUP chose to use MPI-3 shared memory programming to
parallelize code. Implementations using MPI shared memory
programming depend on a shared memory architecture and
enable regions of shared memory allocated by one process to
be accessed by other processes without communication across
a network. Compared to point-to-point communication used
in Stranden and Lidauer’s study (Strandén and Lidauer, 2001),
sharedmemory programming has the following benefits: (1) time
for communication over a network among processes is saved;
(2) processes can store less variables in local memory so that
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memory consumption is reduced; and (3) programming becomes
relatively easy. For programs running in parallel and using shared
memory programming, there is no clear method for calculating
the actual total memory used by all processes. Therefore, we did
not compare the memory usage herein. However, as processes
other than the master process only need to store an intermediate
vector i and other variables of small sizes, the expected total
memory usage is relatively low.
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