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ABSTRACT

The objectives of this study were to evaluate the 
prediction performance of the single-step genomic 
BLUP method using a multi-trait random regression 
model in genomic evaluation for milk production traits 
of Chinese Holsteins, and investigate how parameters 
w, τ, and ω used in the construction of the combined 
relationship matrix (H) affected prediction accuracy 
and bias. A total of 2.8 million test-day records from 
0.2 million cows were available for milk, protein, and 
fat yields. Pedigree information included 0.3 million 
animals and 7,577 of them were genotyped with medi-
um-density single nucleotide polymorphism marker 
panels. Genotypes were imputed into Geneseek Ge-
nomic Profiler HD (GeneSeek, Lincoln, NE) including 
77K markers. A reduced data set for evaluating models 
was extracted from the full data set by removing test-
day records from the last 4 yr. Bull and cow validation 
populations were constructed for each trait. We evalu-
ated the prediction performance of the multiple-trait 
multiple-lactation random regression single-step ge-
nomic BLUP (RR-ssGBLUP) models with different 
values of parameters w, τ, and ω in the H matrix, tak-
ing consideration of inbreeding. We compared RR-ssG-
BLUP with the multiple-trait multiple-lactation ran-
dom regression model based on pedigree and genomic 
BLUP. De-regressed proofs for 305-d milk, protein, and 
fat yields averaged over 3 lactations, which were calcu-
lated from the full data set, were used for posteriori 
validations. The results showed that RR-ssGBLUP was 
feasible for implementation in breeding practice, and 
its prediction performance was superior to the other 2 
methods in the comparison, including prediction accu-
racy and unbiasedness. For bulls, RR-ssGBLUP models 
with w0 05 2 0 1 0. . . ,τ ω  w0 05 2 5 1 0. . . ,τ ω  and w0 1 1 6 0 4. . .τ ω  achieved 

the best performance for milk, protein, and fat yields, 
respectively. For cows, the RR-ssGBLUP with w0 2 1 6 0 4. . .τ ω  
performed the best for all 3 traits. The H matrix con-
structed with larger τ and smaller ω gave better conver-
gence in solving mixed model equations. Among differ-
ent RR-ssGBLUP models, the differences in validation 
accuracy were small. However, the regression coefficient 
indicating prediction bias varied substantially. The in-
crease of w and τ, and decrease of ω, led to an increase 
in the regression coefficient. The results demonstrated 
RR-ssGBLUP is a good alternative to the multi-step 
approach, but the optimal choice of parameters should 
be found via preliminary validation study to achieve 
the best performance.
Key words: genomic evaluation, single-step GBLUP, 
random regression model, Chinese Holstein

Short Communication

National genomic selection of Chinese Holsteins has 
been conducted since 2012 using a multi-step procedure, 
which includes genetic evaluation based on pedigree, 
genomic evaluation based on genotypic information, 
and a combination of the results from these 2 steps. Re-
cently, a single-step genomic BLUP (ssGBLUP) has 
been widely used in genomic evaluation. The ssGBLUP 
is a unified approach to calculate genomic enhanced 
breeding value (GEBV; Legarra et al., 2009; Aguilar 
et al., 2010; Christensen and Lund, 2010). The main 
advantages of ssGBLUP over multi-step methods are 
practical simplicity and resistance to preselection bias 
(Vitezica et al., 2011; Legarra et al., 2014).

To make predictions utilizing phenotypic, genomic, 
and pedigree data simultaneously, the single-step 
method replaces the pedigree-based numerator rela-
tionship matrix A in mixed model equations (MME) 
with matrix H, which integrates matrix A and genomic 
relationship matrix G. The construction of the H 
matrix involves several parameters and some of them 
have been demonstrated to have effects on prediction 
performance (Vitezica et al., 2011; Christensen et al., 
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2012). In practical applications, we should determine 
and apply the optimal values of parameters.

In Chinese Holsteins, the genetic evaluation of milk 
production traits based on pedigree employs a multiple-
trait multiple-lactation random regression test-day 
model. The benefit of the random regression test-day 
model is that the partition of variation in phenotype is 
assumed to be time-dependent, and this consequently 
increases the accuracy of genetic evaluation (Schaeffer 
et al., 2000). Integrating the random regression test-
day model into ssGBLUP has been demonstrated to 
be a feasible approach to achieve more accurate and 
less biased predictions (Koivula et al., 2015; Kang et 
al., 2017).

The objectives of this study were to evaluate the pre-
diction performance of the multiple-trait multiple-lac-
tation random regression ssGBLUP (RR-ssGBLUP) 
method in the Chinese Holstein population, compared 
with the random regression test-day model based on 
pedigree and GBLUP (VanRaden, 2008), and investi-
gate how parameters involved in the construction of the 
H matrix affected prediction accuracy and bias of the 
RR-ssGBLUP method.

The data analyzed were from those used in the of-
ficial Chinese Holstein milk production evaluations. 
The phenotypic data included test-day records for milk, 
protein, and fat yields from the first 3 lactations. In 
this study, test-day data included 0.2 million cows with 
a total of 2.8 million observations recorded from 1995 
to 2017, and 0.3 million animals born from 1990 to 
2014 were involved in the pedigree. Test-day records 
were preadjusted for heterogeneous herd-test date-
parity variances on a trait by trait basis according to 
the procedure proposed by Schaeffer et al. (2000). A 
total of 7,577 animals were genotyped with a medium-
density SNP marker panel [i.e., Illumina BovineSNP50 
v1 BeadChip (54K SNP), Illumina, San Diego, CA; 
Illumina BovineSNP50 v2 BeadChip (55K SNP); or 
Geneseek Genomic Profiler HD (77 K SNP), GeneSeek, 
Lincoln, NE]. The genotypes were imputed to Geneseek 
Genomic Profiler HD using FImpute v2.2 (Sargolzaei et 
al., 2014). The SNP were filtered with the criteria that 
the minor allele frequency should be larger than 0.01, 
and the P-value for the Hardy-Weinberg equilibrium 
should be larger than 1 × 10−5. After quality control, 
72,507 autosomal SNP were retained for the following 
analyses.

A reduced data set was extracted from the full data 
set to be a reference data set for evaluating models, by 
removing the last 4 yr of observations. The reduced 
data set included 0.1 million cows with 1.7 million re-
cords. Validation bulls were selected according to the 
criteria that each bull should have more than 20 daugh-
ters with observations in the full data set, and not have 

daughters in the reduced data set. For validation cows, 
their reliabilities of breeding values estimated from the 
full data set should be larger than 0.4, and they should 
not have test-day records in the reduced data set. For 
the 3 traits, the bull validation population consisted 
of 79 genotyped bulls. The cow validation population 
consisted of 1,073, 1,030, and 430 genotyped cows for 
milk, protein, and fat yields, respectively.

The reduced data set was analyzed using the multiple-
trait multiple-lactation RR-ssGBLUP model as follows:

 y X b X b Za Wp e= + + + +1 1 2 2 , 

where y is the vector of test-day observations, and per-
formances of a trait in different parities are considered 
as different traits; b1 is the vector of fixed effects of the 
herd-test date; b2 is the vector of fixed regression coef-
ficients on Legendre polynomials nested within calving 
age-calving season effect; a and p are the vectors of 
random regression coefficients on Legendre polynomials 
nested within the additive genetic effect and permanent 
environmental effect, respectively; X1, X2, Z, and W 
are incidence matrices for b1, b2, a, and p, respectively; 
and e is the vector of the residuals. Legendre polynomi-
als were calculated based on DIM. We determined the 
orders of Legendre polynomials for different effects ac-
cording to Akaike information criterion (Akaike, 1974) 
and Bayesian information criterion (Schwarz, 1978). As 
a result, Legendre polynomials of order 4 were fitted 
to the calving age-calving season effect and additive 
genetic effect. Legendre polynomials of order 3 were 
fitted to the permanent environmental effect.

It was assumed that
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where I is an identity matrix; ⊗ is the Kronecker prod-
uct; C and P are the variance-covariance matrices for 
additive genetic and permanent environmental effects, 
respectively; and R is the residual variance-covariance 
matrix. The residual covariance matrix depends on 
DIM (d: 5–45, 46–155, 156–205, and 206–305 d) and 
lactation number (n: 1, 2, 3). This leads to 12 residual 
covariance matrices with the following form:
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where rhh′ is the covariance between traits h and h′.
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According to Aguilar et al. (2010), Christensen and 
Lund (2010), and Tsuruta et al. (2011), the inverse of 
the H matrix is constructed as follows:
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where A is the numerator relationship matrix based on 
pedigree, subscript 2 indicates the genotyped individu-
als, inbreeding was considered in the constructions of A 
and A22 matrices, and

 G G* ,= +β α  

where G is the genomic relationship matrix constructed 
by the first method of VanRaden (2008), and α and β 
are used to adjust the G matrix to avoid the potential 
incompatibility in scale between the genomic and nu-
merator relationship matrices (Christensen et al., 2012). 
We used different combinations of parameters, (i.e., 
w0 05 1 0 1 0. . . ,τ ω  w0 05 1 6 1 0. . . ,τ ω  w0 05 2 0 1 0. . . ,τ ω  w0 05 2 5 1 0. . . ,τ ω  
w0 1 1 0 1 0. . . ,τ ω  w0 1 1 6 0 4. . . ,τ ω  w0 1 1 6 0 5. . . ,τ ω  w0 1 1 6 1 0. . . ,τ ω  w0 1 2 0 1 0. . . ,τ ω  
w0 1 2 5 1 0. . . ,τ ω  w0 2 1 0 0 5. . . ,τ ω  w0 2 1 0 0 6. . . ,τ ω  w0 2 1 0 0 7. . . ,τ ω  w0 2 1 0 0 8. . . ,τ ω  
w0 2 1 0 0 9. . . ,τ ω  w0 2 1 0 1 0. . . ,τ ω  w0 2 1 6 0 4. . . ,τ ω  w0 2 1 6 0 5. . . ,τ ω  w0 2 1 6 0 8. . . ,τ ω  
w0 2 1 6 1 0. . . ,τ ω  and w0 25 1 6 1 0. . . )τ ω  to investigate the parame-
ters’ effects on prediction performance of RR-ssGBLUP.

To exploit the potential advantages of RR-ssGBLUP 
over its conventional counterparts, we additionally per-
formed genetic prediction using a random regression 
model based on pedigree (PA) and subsequent genomic 
prediction using the method of GBLUP. The model of 
PA was the same as that of RR-ssGBLUP, except that 
the H matrix in the single-step method was replaced by 
the A matrix in the PA model. Variance components 
in RR-ssGBLUP and PA were all estimated based on 
the model of PA using Gibbs sampling implemented in 
BLUPF90 (Misztal et al., 2002). As Gibbs sampling is 
time consuming and the execution time increases with 
the size of data set, we used a small sample of the whole 
data set to estimate variance components, including 
approximately 0.3 million test-day records of 20,053 
individuals and 44,580 individuals with pedigrees. 
The sample size was similar to those in other stud-
ies (Strabel et al., 2005; Muir et al., 2007). The MME 
for RR-ssGBLUP and PA with the estimated variance 
components were solved using a preconditioned con-
jugate gradient by iteration on data implemented in 
PIBLUP (Kang et al., 2018).

The GBLUP model (VanRaden, 2008) used was a 
3-trait model as follows:

 y u Zg e= + + , 

where y is the vector of de-regressed proofs (DRP) for 
milk, protein, and fat yields, which are derived from 
EBV for 305-d yields averaged over the first 3 lacta-
tions (Schaeffer et al., 2000); u is the vector of overall 
means for the 3 traits; g is the vector of additive ge-
nomic effects with a distribution of N 0 G G, ;⊗( )0  Z is 
the corresponding incidence matrix; and e is the vector 
of random residuals with distribution of N 0 D R, .⊗( )  G 
is the aforementioned genomic relationship matrix with 
0.02 added to its diagonal elements to avoid singularity 
problems; G0 is the additive genomic variance-covari-
ance matrix; R is the residual variance-covariance ma-
trix; and D is a diagonal matrix (see details below). All 
of the elements in G0 and R are not zero.

The reliabilities of averaged EBV were approximated 
following the procedure proposed by Jamrozik et al. 
(2000). The DRP derivation and corresponding reliabil-
ity were calculated according to Garrick et al. (2009). 
Diagonal elements in the D matrix in the GBLUP 
model are dij = 1/sij, where the weighting factor is 
d sii i= 1/ , with s r ri DRP DRP= −( )2 21/ , being the reliabil-
ity of DRP for trait j of individual i. We employed the 
DMU software package (Madsen et al., 2014) to esti-
mate the variance-covariance components and solve 
MME for the GBLUP model.

For evaluation of different models, DRP rDRP
2  and 

their corresponding reliabilities for individuals in the 
validation population were estimated from the full data 
set using the PA model. In model evaluation, EBV and 
GEBV were predicted based on the reduced data set. 
Prediction accuracy was evaluated as the Pearson cor-
relation between GEBV (or EBV) and DRPfull( ) of indi-
viduals in the validation population, corrected with the 
average of DRP reliability DRPfull  that is, RDRP

2( ), In 

addition, the regression coefficient of r
r

R

GEBV DRP

DRP

full=
,

.
2

 

on GEBV (b) was calculated to assess prediction bias 
of the model.

In our study, the estimates of parameters α and β 
were 0.011 and 0.989 (i.e., closer to 1 and 0). This 
means that the G and A22 matrices were relatively 
compatible and the G matrix was little adjusted. Our 
results showed that the computing time per round of 
iteration was of the same length for different RR-ssGB-
LUP models. This is because only small differences 
existed in MME due to different values of parameters 
used in H matrix construction. We have taken consid-
eration of inbreeding in the construction of A and A22 
matrix in all RR-ssGBLUP models. We further tested 
the rate of convergence of RR-ssGBLUP models ex-
cluding inbreeding, using DRPfull w0 1 1 6 1 0. . . ,τ ω  w0 1 2 0 1 0. . . ,τ ω  
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w0 2 1 6 1 0. . . ,τ ω  w0 2 1 6 0 8. . . ,τ ω  and w0 1 1 6 0 5. . . ,τ ω  Results showed 
that considering inbreeding reduced the number of 
PCG iterations by 440, 81, and 192 for RR-ssGBLUP 
with w0 2 1 6 0 4. . . .τ ω  w0 1 1 6 1 0. . . ,τ ω  and w0 1 2 0 1 0. . . ,τ ω  Similar re-
sults for ssGBLUP with ω = 1.0 were also observed in 
other studies (Matilainen et al., 2016; Masuda et al., 
2018). But for RR-ssGBLUP with ω  < 1.0, that is, 
w0 2 1 6 1 0. . . .τ ω  w0 2 1 6 0 8. . . ,τ ω  and w0 1 1 6 0 5. . . ,τ ω  considering in-
breeding had little effect on convergence, which only 
increased or decreased several rounds of iterations. 
Therefore, including inbreeding can only improve the 
convergence of RR-ssGBLUP models with ω = 1.0. 
Moreover, for RR-ssGBLUP models, parameters τ and 
ω in H−1 had effects on the rate of convergence, no 
matter whether inbreeding was considered or not. Large 
values of τ can accelerate the convergence. For example, 
for RR-ssGBLUP including inbreeding and with w = 
0.1 and ω = 1.0, the numbers of iterations were 703, 
653, and 617 for values of τ of 1.6, 2.0, and 2.5, respec-
tively. Compared with τ, the parameter ω had a larger 
effect on convergence. Figure 1 shows the rate of con-
vergence of RR-ssGBLUP including inbreeding and 
with w = 0.1, τ = 1.6, and different values of ω. Small-
er ω tended to give better convergence, whereas larger 
ω (ω = 1.5) led to divergence. This is in agreement with 

the findings of Koivula et al. (2015). This can be ex-
plained because the convergence rate is influenced by 
the property of the H matrix when MME is solved by 
iterative methods. Larger values of ω causes the H ma-
trix to be less positive semi-definite, thus leading to 
slower convergence or even divergence. This negative 
effect can be compensated by larger τ to make the H 
matrix more positive semi-definite (Martini et al., 
2018).

Tables 1 and 2 present prediction performance of 
different methods for candidate bulls and cows, respec-
tively. The tables show validation accuracies (r) and 
regression coefficients (b). In general, genomic selec-
tion methods had superior prediction performance in 
comparison with the PA method, and RR-ssGBLUP 
performed the best among all the models evaluated.

The RR-ssGBLUP models generally achieved the 
same or slightly higher accuracy compared with the 
GBLUP method. Our results indicated that the differ-
ences in validation accuracy among the RR-ssGBLUP 
models with different values of parameters were small, 
which is consistent with previous studies (Koivula 
et al., 2015). For bulls, validation accuracies of RR-
ssGBLUP models with different values of parameters 
varied between 0.42 and 0.47 for milk yield, between 

Figure 1. Convergence rates of the multiple-trait multiple-lactation random regression single-step genomic BLUP method with w = 0.1, τ = 
1.6, and different values of ω (0.5, 1.0, and 1.5) in analyses of the reduced data set. w = proportion of polygenic variance; τ = weight for G−1; 
ω = weight for A22

1− . The log(C) denotes the logarithm to base 10 of the convergence criterion.
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0.36 and 0.43 for protein yield, and between 0.20 and 
0.24 for fat yield. The RR-ssGBLUP model with the 
parameters providing the best performance improved 
the accuracy by 0.31 for milk, 0.29 for protein, and 
0.15 for fat, compared with the PA method. For cows, 
validation accuracies of the RR-ssGBLUP models with 
different H matrices varied between 0.34 and 0.35 for 
milk yield, between 0.28 and 0.30 for protein yield, and 
between 0.21 and 0.27 for fat yield. The RR-ssGBLUP 
model with the best choices of parameters improved 
the accuracy by 0.10 for milk yield and 0.05 for protein 
yield.

The regression coefficient (b) of DRPfull on GEBV (or 
EBV) reflects the unbiasedness of prediction. Optimal 
prediction for candidate individuals should have a re-
gression coefficient of 1. In most cases, EBV or GEBV 
were inflated (b <1), especially for the PA and GBLUP 
models. The deflation of EBV or GEBV (b >1) were 
observed mainly in genomic prediction of milk yield for 
bulls, and some in genomic prediction of protein yield 

for bulls. Similar to validation accuracy, GEBV by GB-
LUP and RR-ssGBLUP methods were generally less 
biased than the PA method. When GEBV obtained us-
ing the GBLUP method were inflated or deflated, RR-
ssGBLUP with a specific combination of parameters 
could obtain more unbiased predictions. For both bulls 
and cows, increase of w and τ, and decrease of ω led to 
an increase of the regression coefficient. Moreover, our 
results indicated that changes in w and τ had smaller 
effects on regression coefficients compared with that of 
ω. The effects of parameters τ and ω on regression coef-
ficients can be explained because both an increase in τ 
and decrease in ω reduced the variance of the predicted 
genetic value, thus resulting in larger regression coef-
ficients (Martini et al., 2018).

Considering both prediction accuracy and bias, the 
best method for prediction was the RR-ssGBLUP 
method. However, the best choice of parameters in the 
construction of the H matrix depended on traits and 
candidate populations. For bulls, the optimal parame-

Table 1. Bull validation results from different methods, showing validation accuracies (r) and regression 
coefficients (b) from the parent average (PA), genomic BLUP (GBLUP), and random regression single-step 
GBLUP (RR-ssGBLUP) methods with different combinations of parameters

Method

Milk yield

 

Protein yield

 

Fat yield

r b r b r b

PA 0.16 0.47  0.14 0.38  0.09 0.27
GBLUP 0.45 1.11  0.40 0.97  0.19 0.52
RR-ssGBLUP1         
 w0 2 1 6 0 4. . . .τ ω 0.44 0.77  0.37 0.68  0.20 0.38

 w0 05 1 0 1 0. . .τ ω 0.46 0.94  0.40 0.86  0.22 0.51

 w0 05 1 6 1 0. . .τ ω 0.47 1.03  0.42 0.95  0.23 0.58

 w0 05 2 0 1 0. . .τ ω 0.47 1.12  0.43 1.04  0.24 0.65

 w0 05 2 5 1 0. . .τ ω 0.44 0.80  0.37 0.70  0.20 0.39

 w0 1 1 0 1 0. . .τ ω 0.44 1.56  0.38 1.39  0.23 0.99

 w0 1 1 6 0 4. . .τ ω 0.45 1.50  0.39 1.35  0.23 0.94

 w0 1 1 6 0 5. . .τ ω 0.46 0.97  0.40 0.89  0.22 0.52

 w0 1 1 6 1 0. . .τ ω 0.47 1.06  0.42 0.98  0.23 0.59

 w0 1 2 0 1 0. . .τ ω 0.47 1.15  0.43 1.07  0.24 0.67

 w0 1 2 5 1 0. . .τ ω 0.42 1.37  0.36 1.20  0.21 0.82

 w0 2 1 0 0 5. . .τ ω 0.43 1.31  0.36 1.15  0.21 0.77

 w0 2 1 0 0 6. . .τ ω 0.44 1.23  0.37 1.09  0.21 0.71

 w0 2 1 0 0 7. . .τ ω 0.44 1.12  0.37 1.00  0.21 0.63

 w0 2 1 0 0 8. . .τ ω 0.45 0.99  0.37 0.88  0.21 0.53

 w0 2 1 0 0 9. . .τ ω 0.44 0.84  0.37 0.74  0.20 0.42

 w0 2 1 0 1 0. . .τ ω 0.44 1.58  0.38 1.40  0.22 0.99

 w0 2 1 6 0 4. . .τ ω 0.45 1.53  0.39 1.37  0.23 0.96

 w0 2 1 6 0 5. . .τ ω 0.46 1.29  0.40 1.17  0.23 0.76

 w0 2 1 6 0 8. . .τ ω 0.46 1.02  0.40 0.94  0.22 0.56

 w0 2 1 6 1 0. . .τ ω 0.46 1.05  0.40 0.96  0.22 0.58
1w = proportion of polygenic variance; τ = weight for G−1; ω = weight for w0 25 1 6 1 0. . .τ ω
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ters for milk yield were w0 2 1 6 0 4. . . ,τ ω  for protein yield 
were w0 05 2 0 1 0. . . ,τ ω  and for fat yield were w0 05 2 5 1 0. . . ,τ ω  For 
cows, the best choice of parameters for all the 3 milk 
production traits was w0 1 1 6 0 4. . . .τ ω

Compared with the multi-step method employed by 
the national Chinese Holstein milk production evalu-
ation, the RR-ssGBLUP method could simplify the 
procedure and obtain the combined index in a single 
step. The advantage of RR-ssGBLUP was shown to 
exist in prediction accuracy. Furthermore, the more 
obvious and attractive benefit of RR-ssGBLUP is that 
it can achieve almost unbiased prediction with specific 
parameter combinations. In accordance with previ-
ous studies (Koivula et al., 2015; Baba et al., 2017), 
we demonstrated the superiority of RR-ssGBLUP in 
prediction performance and the feasibility of its imple-
mentation in breeding practice. Our results show that 
the best choice of parameters involved in RR-ssGBLUP 
depended on traits and candidate populations. We 
should figure out the optimal values of parameters via 

preliminary validation study and further apply them in 
practical applications.
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1w = proportion of polygenic variance; τ = weight for G−1; ω = weight for w0 25 1 6 1 0. . .τ ω



Journal of Dairy Science Vol. 101 No. 12, 2018

SHORT COMMUNICATION: GENOMIC BEST LINEAR UNBIASED PREDICTOR 11149

Akaike, H. 1974. A new look at the statistical model identification. 
IEEE Trans. Automatic Control 19:716–723.

Baba, T., Y. Gotoh, S. Yamaguchi, S. Nakagawa, H. Abe, Y. Ma-
suda, and T. Kawahara. 2017. Application of single-step genomic 
best linear unbiased prediction with a multiple-lactation random 
regression test-day model for Japanese Holsteins. Anim. Sci. J. 
88:1226–1231. (Nihon Chikusan Gakkaiho).

Christensen, O. F., and M. S. Lund. 2010. Genomic prediction when 
some animals are not genotyped. Genet. Sel. Evol. 42:2.

Christensen, O. F., P. Madsen, B. Nielsen, T. Ostersen, and G. Su. 
2012. Single-step methods for genomic evaluation in pigs. Animal 
6:1565–1571.

Garrick, D. J., J. F. Taylor, and R. L. Fernando. 2009. Deregressing 
estimated breeding values and weighting information for genomic 
regression analyses. Genet. Sel. Evol. 41:55.

Jamrozik, J., L. R. Schaeffer, and G. B. Jansen. 2000. Approximate 
accuracies of prediction from random regression models. Livest. 
Prod. Sci. 66:85–92.

Kang, H., C. Ning, L. Zhou, S. Zhang, N. Yang, and J. F. Liu. 2018. 
PIBLUP: High-performance software for large-scale genetic evalu-
ation of animals and plants. Frontiers Genet. 9:226.

Kang, H., L. Zhou, R. Mrode, Q. Zhang, and J. F. Liu. 2017. Incor-
porating the single-step strategy into a random regression model 
to enhance genomic prediction of longitudinal traits. Heredity 
119:459.

Koivula, M., I. Strandén, J. Pösö, G. P. Aamand, and E. A. Mäntysaa-
ri. 2015. Single-step genomic evaluation using multitrait random 
regression model and test-day data. J. Dairy Sci. 98:2775–2784.

Legarra, A., I. Aguilar, and I. Misztal. 2009. A relationship matrix 
including full pedigree and genomic information. J. Dairy Sci. 
92:4656–4663.

Legarra, A., O. F. Christensen, I. Aguilar, and I. Misztal. 2014. Sin-
gle Step, a general approach for genomic selection. Livest. Sci. 
166:54–65.

Madsen, P., P. Sørensen, G. Su, L. H. Damgaard, H. Thomsen, and 
R. Labouriau. 2014. DMU–A package for analyzing multivariate 
mixed models. Pages 27–11 in Proc. 8th World Congress on Ge-
netics Applied to Livestock Production, Belo Horizonte, Minas 
Gerais, Brazil, 13–18 August, 2006.

Martini, J. W. R., M. F. Schrauf, C. A. Garcia-Baccino, E. C. G. 
Pimentel, S. Munilla, A. Rogberg-Muñoz, R. J. C. Cantet, C. Re-

imer, N. Gao, V. Wimmer, and H. Simianer. 2018. The effect of 
the H−1 scaling factors τ and ω on the structure of H in the single-
step procedure. Genet. Sel. Evol. 50:16.

Masuda, Y., P. M. Vanraden, I. Misztal, and T. J. Lawlor. 2018. Dif-
fering genetic trend estimates from traditional and genomic evalu-
ations of genotyped animals as evidence of preselection bias in US 
Holsteins. J. Dairy Sci. 101:5194–5206.

Matilainen, K., M. Koivula, I. Strandén, G. P. Aamand, and E. A. 
Mäntysaari. 2016. Managing genetic groups in single-step genomic 
evaluations applied on female fertility traits in Nordic Red dairy 
cattle. Pages 71–75 in Interbull Bulletin. Vol. 50, Puerto Varas, 
Chile.

Misztal, I., S. Tsuruta, T. Strabel, B. Auvray, T. Druet, and D. H. 
Lee. 2002. BLUPF90 and related programs (BGF90). Page 743 in 
Proc. World Congress on Genetics Applied To Livestock Produc-
tion, Montpellier, France.

Muir, B. L., G. Kistemaker, J. Jamrozik, and F. Canavesi. 2007. 
Genetic parameters for a multiple-trait multiple-lactation ran-
dom regression test-day model in Italian Holsteins. J. Dairy Sci. 
90:1564–1574.

Sargolzaei, M., J. P. Chesnais, and F. S. Schenkel. 2014. A new ap-
proach for efficient genotype imputation using information from 
relatives. BMC Genomics 15:478.

Schaeffer, L. R., J. Jamrozik, G. J. Kistemaker, and B. J. Van Door-
maal. 2000. Experience with a test-day model. J. Dairy Sci. 
83:1135–1144.

Schwarz, G. 1978. Estimating the dimension of a model. Ann. Stat. 
6:461–464.

Strabel, T., J. Szyda, E. Ptak, and J. Jamrozik. 2005. Comparison 
of random regression test-day models for Polish Black and White 
cattle. J. Dairy Sci. 88:3688–3699.

Tsuruta, S., I. Misztal, I. Aguilar, and T. J. Lawlor. 2011. Multiple-
trait genomic evaluation of linear type traits using genomic and 
phenotypic data in US Holsteins. J. Dairy Sci. 94:4198–4204.

VanRaden, P. M. 2008. Efficient methods to compute genomic predic-
tions. J. Dairy Sci. 91:4414–4423.

Vitezica, Z. G., I. Aguilar, I. Misztal, and A. Legarra. 2011. Bias in 
genomic predictions for populations under selection. Genet. Res. 
(Camb.) 93:357–366.


	Short communication: Single-step genomic evaluation of milk productiontraits using multiple-trait random regression model in Chinese Holsteins
	Short Communication
	ACKNOWLEDGMENTS
	REFERENCES


