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Piglet uniformity (PU) and farrowing interval (FI) are important reproductive traits related

to production and economic profits in the pig industry. However, the genetic architecture

of the longitudinal trends of reproductive traits still remains elusive. Herein, we performed

a genome-wide association study (GWAS) to detect potential genetic variation and

candidate genes underlying the phenotypic records at different parities for PU and FI

in a population of 884 Large White pigs. In total, 12 significant SNPs were detected on

SSC1, 3, 4, 9, and 14, which collectively explained 1–1.79% of the phenotypic variance

for PU from parity 1 to 4, and 2.58–4.11% for FI at different stages. Of these, seven

SNPs were located within 16 QTL regions related to swine reproductive traits. One

QTL region was associated with birth body weight (related to PU) and contained the

peak SNP MARC0040730, and another was associated with plasma FSH concentration

(related to FI) and contained the SNP MARC0031325. Finally, some positional candidate

genes for PU and FI were identified because of their roles in prenatal skeletal muscle

development, fetal energy substrate, pre-implantation, and the expression of mammary

gland epithelium. Identification of novel variants and candidate genes will greatly advance

our understanding of the genetic mechanisms of PU and FI, and suggest a specific

opportunity for improving marker assisted selection or genomic selection in pigs.

Keywords: piglet uniformity, farrowing interval, genome-wide association study, pigs, candidates

INTRODUCTION

In the pig production industry, reproductive traits such as litter size, litter birth weight, and litter
mortality play an important role in the development of production and economic profits. In the
past few decades, litter size at birth has been treated as an important criterion to evaluate sow
productivity (Southwood and Kennedy, 1991; Blasco et al., 1998). However, piglet survival after
birth is greatly negatively affected by increasing litter size. Previous genetic studies have shown
that piglet uniformity (PU, the within-litter birth weight variability) is positively correlated with
piglet mortality (Milligan et al., 2002; Damgaard et al., 2003), and that low birth weight piglets
may experience morbidity and mortality. In addition, the farrowing interval (FI, the number of
days between two adjacent litters) in a sow’s productive life is also an important index in evaluating
reproductive ability (Serenius et al., 2003). FI can be considered a comprehensive trait that contains
lactation length, weaning to estrus mating interval, and gestation length. Therefore, more attention
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was focused on PU and FI (Wolf et al., 2005; Cavalcante Neto
et al., 2009) than other traits. Both PU and FI are low-heritability
traits, where the estimated heritabilities range from 0.05 to 0.12
(Wittenburg et al., 2008; Cavalcante Neto et al., 2009; Zhang
et al., 2016). Although we have already made some progress
in traditional genetic improvement of reproductive traits, it is
still a challenge to understand the biological mechanisms of
complex traits (Andersson et al., 2009), which can be an effective
alternative basis for breeding programs.

A total of 16,516 QTL associated with 626 different traits
in pigs have been reported in previous studies (http://www.
animalgenome.org/cgi-bin/QTLdb/SS/index). Among them,
1,416 QTL are associated with reproductive traits. Fifty QTL for
PU have been detected across the majority of chromosomes, but
there are still no QTL for FI. Although numerous QTL have been
detected in domestic animals (King et al., 2003; Holl et al., 2004),
these findings are still insufficient because of the low power of
linkage analyses and poor resolution in most QTL (Tabor et al.,
2002). In recent years, genome-wide association studies (GWAS)
have become a powerful strategy for the detection of variation in
different traits based on high throughput SNP platforms. It has
been widely used in humans (Hindorff et al., 2009; Lauc et al.,
2010; Hoffmann et al., 2017) and domestic animals (Petersen
et al., 2013; Kominakis et al., 2017). In pigs, many GWAS
have been performed on various economically important traits,
including immune traits (Luo et al., 2012; Ponsuksili et al., 2016),
meat quality traits (Casiró et al., 2017; Verardo et al., 2017),
and structural soundness traits (Fan et al., 2011). However, few
GWAS have been conducted to assess the genetic architecture
of PU and FI. In addition, it is notable that many complex traits
undergo dynamic alterations as animals age (Van de Pol and
Verhulst, 2006), so the phenotypes of animals at different stages
should be used in GWAS to detect genetic variants and increase
the statistical power.

In our study, we performed a GWAS on the PU and FI at 4
different stages from first to fourth parity, based on farrowing
records using a PorcineSNP80 BeadChip in a Large White pig
population. The purpose of this study was to identify the genomic
variants and candidate genes that contribute to the phenotypic
variability of PU and FI, and promote the improvement of pig
breeding programs.

MATERIALS AND METHODS

Animals and Phenotypes
A total of 884 Large White pigs from the nucleus pig breeding
farm of Beijing Shunxin Agriculture Co., Ltd (http://www.
000860.com/sxkg/, Beijing, China) were used in our study. We
collected blood samples from the jugular vein using the standard
procedure of the breeding program, which was approved by the
Animal Welfare Committee of China Agricultural University
(GB/T 17236–2008).

All pigs had the same genetic background. Farrowing records
were collected from parity 1 to 4 during the years 2010 to 2016.
Piglet uniformity was defined as the within-litter birth weight
variability, usually represented by the coefficient of variation of
birth weights within one litter. Farrowing interval was defined

as the number of days between two adjacent litters. The rank-
based inverse normal transformation of phenotypic values was
performed by the function rntransform in the GenABEL package
in R (Aulchenko et al., 2007).

Genotyping and Quality Control
Genomic DNA was extracted from 1-mL blood samples using
TIANamp Genomic DNA kits (Tiangen Biotech, Beijing, China).
The quality and quantity of the DNA samples were measured
with a NanoDropTM 2000 (Thermo Fisher Scientific, Waltham,
MA, USA). All DNA samples were eligible for genotyping with
a ratio of light absorption (A260/280) between 1.8 and 2.0, a
concentration>50 ng/µL, and total volume<50µL. Genotyping
was conducted using the Porcine SNP80 BeadChip (GeneSeek,
Lincoln, Nebraska, USA) which contained 68,528 SNPs across
18 autosomes and two sex chromosomes. Quality control of
the genotype data was carried out using Plink software (Purcell
et al., 2007). DNA samples with genotyping of <90% of the
markers were removed. The SNPs with call rates < 90%, minor
allele frequencies <0.03, Hardy–Weinberg equilibrium (HWE)
P < 1 × 10−6, and the SNPs with no position information
and located on the sex chromosomes were also excluded from
the dataset. After quality control, the missing genotypes were
imputed using Beagle software (Browning and Browning, 2009)
based on the remaining SNP genotypes, SNPs with the highest
linkage disequilibrium r2-value larger than 0.3 were retained for
further analysis (Yuan et al., 2015).

Genome-Wide Association Studies
GWAS were implemented independently for PU and FI. From
parity 1 to 4, most individuals had more than 1 farrowing record
which could be treated as “longitudinal data.” A single-SNP
GWASwas performed in ASReml software (Gilmour et al., 2009),
and testing was done using a Wald F statistic. The repeatability
model was as follows:

Y = 1µ + Xb+ fm+ Zu+Wpe+ e

where Y is the vector of phenotype values; µ is the overall mean;
b is the vector of fixed effects including herd, farrowing season,
parity, and number of piglets born alive. The fixed effect of
number of piglets born alive was only applied in the analysis of
PU, where it was classified into four groups:≤5, 6–11, 12–13, 14–
15, and ≥16 (Quesnel et al., 2008); m is the incidence vector of
SNP genotype scores with values 0, 1, or 2 corresponding to the
three genotypes (11, 12, and 22) of the SNP (where two denotes
the allele with a minor frequency); f is the regression coefficient
of phenotypes on SNP genotypes; u is the vector of residual
polygenetic effects with u ∼ N (0,Gσ 2

a), where G is the genomic
relationship matrix that was constructed through SNP markers
(VanRaden, 2008) and σ 2

a is the polygenetic additive variance,
compared with pedigree-based relationships, genetic relationship
matrices can better remove population structure and control
false positives (Kang et al., 2010); pe is the vector of random
permanent environmental effects with pe ∼ N (0, Iσ 2

pe), where

σ 2
pe is the permanent environmental variance; e is the vector of

residual errors with e ∼ N (0, Iσ 2
e ), where σ 2

e is the residual
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errors variance; X, Z, and W are the incidence matrices for b,
u, and pe, respectively. For most genetic association studies, the
effect of any given locus on the trait is very small (Manolio et al.,
2009), so we only need to estimate the variance parameters once
for each data set, and then apply them to each marker (Kang
et al., 2010). We used ASReml software to estimate σ 2

a , σ
2
pe, and

σ 2
e using average information restricted maximum likelihood.
Since Bonferroni correction is overly conservative and may

produce false negative results (Johnson et al., 2010), we used
the false discovery rate (FDR) (Benjamini and Hochberg, 1995;
Weller et al., 1998) to determine the threshold values. FDR was
set as 0.01, and the threshold P-value was calculated as follows:

P = FDR× n/m

where n is the number of P< 0.01 in the results, andm is the total
number of SNPs.

The Manhattan plots and quantile-quantile (QQ) plots were
drawn by R packages (http://cran.r-project.org/web/packages/
gap/index.html). Genomic inflation factor λ was calculated to
judge the extent of false positive signals with the estlambda
function in the GenABEL packages in R.

GCTA software (Yang et al., 2011) was used to calculate
phenotypic variances contributed by significant SNPs for each
parity. The genetic relationship matrix (GRM) was created based
on genotyped SNPs on chromosomes, and fixed effects (herd,
farrowing season, and number of piglets born alive) were treated
as covariates to account for potential population structure. The
liner mixed model as follows:

Y = Xβ + Z1gG1 + Z2gG2 + e

where Y is an n×1 vector of phenotypic values for n individuals,
β is a vector of fixed effects with its incidence matrix X, gG1
is a vector of aggregate effects of the selected significant SNPs
with its incidence matrix Z1, and var

(

gG1
)

= VG1σ
2
G1 where

VG1 represents the selected SNPs-derived GRM with its additive
genetic variance σ 2

G1, gG2 is a vector of aggregate effects of
the other SNPs except the selected significant SNPs and Z2 is
an incidence matrix for gG2, and var

(

gG2
)

= VG2σ
2
G2 where

VG2 represents the other SNPs-derived GRM with its additive
genetic variance σ 2

G2, e is the vector of residual errors with e ∼

N
(

0, Iσ 2
e

)

, where σ 2
e is the residual errors variance and I is an

identity matrix. In this study, the phenotypic variance explained
by selected SNPs is defined as σ 2

G1/σ
2
p where σ 2

p is the phenotypic
variance.

Haplotype Block Analysis
To further detect candidate regions associated with the two
traits, we conducted linkage disequilibrium analysis for the
chromosomal regions with multiple significant SNPs using
Haploview v4.2 (Barrett et al., 2005). A block was defined
using the solid spin algorithm by the criteria of Gabriel et al.
(2002).

Gene Search and Functional Annotation
The functional genes containing or near (within 1Mb) the
identified significant SNPs were selected based on the swine

TABLE 1 | Descriptive statistics of PU and FI in a large white population.

Traits N Units Mean SD Min Max

PU 2,882 % 13 0.07 1 40

FI 2,263 day 161.68 33.14 127 347

N, number of phenotypic records in the association study; Mean arithmetic mean, SD,

standard deviation, Max, maximum; Min, minimum.

genome assembly 10.2 (https://www.ensembl.org/Sus_scrofa/
Info/Index). The annotations of genes were carried out using
the NCBI database (https://www.ncbi.nlm.nih.gov/) based on
the description of gene function and related literatures,
simultaneously, gene ontology (GO) analysis was conducted
using the DAVID Bioinformatics Resources (https://david.
ncifcrf.gov) for PU and FI, respectively. The Fisher’s exact
test was used to assess the significance of the enriched terms
(Dennis et al., 2003; Rivals et al., 2007), and the enriched GO
terms with the P < 0.05 were selected to explore the genes
involved in biological processes (Wang et al., 2015; Xing et al.,
2016).

RESULTS

Phenotype and SNP Data Statistics
Descriptive statistics of phenotypes of PU and FI from parity 1 to
4 are shown in Table 1. Neither trait had approximately normal
distributions, so the rntransform function in the GenABEL
package was used to convert these phenotypes for further
analysis.

After quality control, 880 individuals with a genotyping
call rates >90% were retained, and 51,727 SNPs were
available for the GWAS. The average distance between the
neighboring SNPs on each chromosome was calculated (Table
S1). The number of SNPs on each chromosome ranged from
1,424 (SSC18) to 5,041 (SSC1), and the adjacent physical
distances between them were 30.9 kb (SSC12) to 62.6 kb
(SSC1).

Genome-Wide Association Study
In this study, the threshold P-values were 1.01 × 10−4 and
1.05 × 10−4 for PU and FI, respectively. A total of 12
significant SNPs were detected, located on SSC1, 3, 4, 9, and 14
(Figure 1, Table 2). For PU, five significant SNPs were detected,
of which three were located on SSC3. For FI, seven significant
SNPs were discovered, of which five were located on SSC14.
The Manhattan and QQ plots for PU and FI are shown in
Figure 1. The genomic inflation factor λ, calculated to judge
the extent of false positive signals, was 1.04 for PU and 1.03
for FI.

SNP Effects
Using GCTA software, the phenotypic variances explained by
significant SNPs were estimated for each parity. For PU, five
significant SNPs accounted for 1, 1.59, 1.79, and 1.29% of
the phenotypic variance from parity 1 to 4, respectively, and
the most significant SNP, MARC0040730, located on SSC1,
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FIGURE 1 | Manhattan plots and Q-Q plots of the observed P-values for PU and FI. The Manhattan plots indicate −log10 (P-values) for genome-wide SNPs (y-axis)

plotted against their respective positions on each chromosome (x-axis), the horizontal red lines indicate the thresholds for PU (1.01× 10−4) and FI (1.05× 10−4). The

Q-Q plots show the observed −log10-transformed P-values (y-axis) and the expected −log10-transformed P-values (x-axis).

TABLE 2 | All significant SNPs for piglet uniformity and farrowing interval.

Traitsa SNP Chrb Position P-value Nearest/Candidate Genec Location(bp)

PU MARC0040730 1 108275560 1.2E-05 LOC100738627/SMAD7, LIPG, ACAA2 Within/157241, 362855, 594176

WU_10.2_3_11397857 3 11397857 6.3E-05 GTF2IRD1 23126

WU_10.2_3_11416624 3 11416624 4.1E-05 GTF2I 8020

ASGA0013487 3 12121767 7.5E-05 LOC102157744 Within

MARC0019308 9 25110615 8.7E-05 LOC102162346/UBTFL1 Within/495306

FI MARC0031325 3 33686233 7.3E-05 ATF7IP2/EMP2 307754/394825

WU_10.2_4_13026957 4 13026957 4.9E-05 MYC 243290

ALGA0081570 14 132795480 2.5E-05 ADRA2A 390234

ALGA0081580 14 132843854 1.0E-04 ADRA2A 438608

ALGA0081582 14 132860167 8.8E-05 ADRA2A 454921

MARC0033692 14 132951697 2.1E-05 GPAM 521618

ASGA0066458 14 132972206 2.1E-05 GPAM 501109

aPU and FI represent piglet uniformity and farrowing interval.
bPig Chromosome.
cThe gene name with bold type represents candidate genes with <1.0Mb of the SNPs.

The bold value means the positions of the candidate genes with bold type.

accounted for 0.87–0.95% of the phenotypic variance. Notably,
the effect alleles at MARC0040730 were associated with PU at
different parities, and the phenotypic differences among the three
genotypes at this locus are presented in Figure 2. Along with
different parities, each genotype showed different coefficients of
variation for birth weights, except for the genotypes AA and GG
in the fourth parity. For FI, seven significant SNPs explained

3.17, 4.11, and 2.58% of the phenotypic variance at different
parities, respectively. Of note, among them, the peak SNP
MARC0033692, located on SSC14, accounted for 1.13–1.18%
of the phenotypic variance, and the three genotypes revealed
consistent trends for FI at different parities, i.e., the individuals
with genotype GG had a longer FI than the other genotypes
(Figure 2).
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FIGURE 2 | Phenotypic differences contributed by loci of MARC0040730 and MARC0033692. The left plot describes the phenotypes of PU among three genotypes

at MARC0040730. The right plot describes the phenotypes of FI among three genotypes at MARC0033692. Blue diamond, red square and black circle represent

minor-allele homozygotes, heterozygotes, and major-allele homozygotes, respectively. Number of samples for each genotype is indicated in the top right.

Haplotype Block Analysis
In our study of FI, we found five significant SNPs located on
SSC14, and detected a haplotype block (132.8–132.97Mb)
(Figure 3). The LOC106506128 gene was located in this region.
In particular, the nearest annotated genes of significant
SNPs, including the GPAM and ADRA2A genes, were
located downstream (501Kb) and upstream (390Kb) of
this region, respectively. As for PU, however, relatively few
significant SNPs generated haplotype blocks. Two significant
SNPs were situated in an 18Kb block on SSC3 (Figure 3),
the GTF2IRD1 gene located downstream (23.1 Kb) of the
region, and GTF2I gene located upstream (8Kb) of the
region.

Candidate Genes and Function Analysis
A total of 61 functional genes that contained or were near
(within 1Mb) the identified significant SNPs were obtained
based on the swine genome assembly 10.2 (Table S2). These
genes were used to perform GO analysis. Thirteen significant
GO terms were identified (Table S3). The most significant GO
terms for PU and FI were related to transitions between
slow and fast fibers, and cellular iron ion homeostasis,
respectively. Considering the genes involved in biological
process in DAVID, and functional annotations in the NCBI
database and literatures, seven genes (SMAD7, LIPG, ACAA2,
UBTFL1, GPAM, ADAR2A, and EMP2) with biological
functions such as prenatal skeletal muscle development,
fetal energy substrate, pre-implantation, and the expression
of mammary gland epithelium were selected as promising
candidates for swine reproductive traits (Table 2). The majority
of these were the nearest functional genes to significant
SNPs.

DISCUSSION

Both PU and FI are important indices that can be used to evaluate
pig reproductive ability and play crucial roles in production
efficiency and economic profits. Thus, it is essential to understand
the genetic mechanisms of reproductive performance for future
pig breeding programs. GWAS provides an efficient way to detect
potential genetic variation and candidate genes in domestic
animals (Zhang et al., 2013), especially for some economically
valuable traits (Schopen et al., 2011; Sell-Kubiak et al., 2015).
In the present study, we conducted a GWAS in a Large White
pig population that contained 884 individuals. Our population
is larger than that in the PU study of Wang et al. (2016), which
consisted of 82 sows. We also made full use of the phenotypic
data at four different parities through a repeatability model
approach, while some other studies only used the phenotypes
of a single parity (Onteru et al., 2012; Schneider et al., 2012).
Moreover, this study can detect the genetic variation influencing
phenotypic variability over time, and capture parity-independent
variation (Smith et al., 2010). Several consistent variants, such as
MARC0040730 (located on SSC1) and MARC0033692 (located
on SSC14), were found to be associated with PU and FI,
respectively, at all parities.

Population stratification is a major factor in false positives
in GWAS. Here, through a repeatability model approach, both
fixed and random effects were used to adjust the population
stratification. In general, a genomic inflation factor λ of <1.05
indicates no population stratification (Price et al., 2010), our
values were 1.04 for PU and 1.03 for FI. QQ plots also indicated
that we have controlled population stratification, but only a few
genomic variants were detected. As we known, quantitative traits
are controlled by polygenes (Falconer and Mackay, 1981), and

Frontiers in Genetics | www.frontiersin.org 5 November 2017 | Volume 8 | Article 194

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang et al. GWAS for Reproductive Traits

the effect of most given locus on the trait is small. In addition,
both PU and FI belong to low-heritability traits, the influence of
genetic factor is limited, and the number of samples in our study
is still not large enough. Therefore, it’s essential to perform studies
with a large population and efficient methods for PU and FI in the
future.

For PU, considering that the number of piglets born and birth
weight were the major influencing factors (Canario et al., 2010),
we selected four functional genes near the significant SNPs as
important candidates. The SMAD7 gene, near to the peak SNP
MARC0040730, belongs to the SAMD gene family, which has
been shown to be a key regulator of transforming growth factor β

(TGF-β) (Hayashi et al., 1997). Recent studies have shown that it
promotes skeletal muscle cell differentiation (Miyake et al., 2010;
Cohen et al., 2015) and follicular development in mice (Gao et al.,
2013). Hua et al. (2016) demonstrated that the SMAD7 gene plays
an important role in prenatal skeletal muscle development and
promotes weaning weight in pigs. For better fetal growth, the
mother must provide sufficient nutrients such as amino acids,
glucose, and lipids through the placenta (Brett et al., 2014). Thus,
genes associated with energy metabolism may affect fetal growth
and piglet birth weight variation. Both LIPG and ACAA2 genes
are involved in lipid metabolism, and lipids such as triglycerides
and cholesterol play critical roles in fetal growth (Woollett, 2011).
The LIPG gene encodes a member of the triglyceride lipase
family of proteins, which participates in glycerolipid metabolism
and transportation of lipids. The ACAA2 gene encodes the
protein that catalyzes the last step in fatty acid β-oxidation
(Eaton et al., 1996), and is involved in the fatty acid β-oxidation
pathway that can provide fetal energy substrate. Furthermore,
fetal lipid deposition is mainly increased in the gestational
period (Haggarty, 2002). During the course of reproduction, pre-
implantation stages are important for reproductive and stem cell
biology (Riaz et al., 2011). The UBTFL1 gene, also known as
Hmgpi, is a preimplantation-specific gene and is involved in early
development and implantation. Yamada et al. (Yamada et al.,
2010) indicated that Hmgpi plays a critical role in the earliest
stages of mammalian embryonic development.

For FI, which contains lactation length, weaning to estrus
mating interval, and gestation length, three functional genes
related to the three stages and located near the significant
SNPs were selected as potential candidates. The GPAM gene
encodes a mitochondrial enzyme and catalyzes the initial step
in triacylglycerol and phospholipid biosynthesis (Wendel et al.,
2009). Knockout studies suggest that the GPAM isoform plays
an important role in the development of lactation (Gimeno and
Cao, 2008), which is expressed in mammary gland epithelium
and is upregulated during lactation. The ADAR2A gene encodes
a member of the G protein-coupled receptor superfamily, which
plays a critical role in the central nervous system. Philipp
et al. (2002) showed that α2-adrenoceptors are important
regulators of placental structure and function that can help to
establish the circulatory system of the placenta between mother
and embryo and thus maintain pregnancy. The EMP2 gene
encodes a tetraspan protein that plays an important role in
the endometrium and is differentially expressed in the different
phases of the estrous cycle (Wadehra et al., 2008). During

FIGURE 3 | Haplotype blocks for significant SNPs. (A) Indicate a haplotype

block composed of significant SNPs located on SSC3 for PU. (B) Indicate a

haplotype block composed of significant SNPs located on SSC14 for FI. The

black lines mark the identified blocks.

implantation, EMP2 is involved in the molecular interactions
between the blastocyst-stage embryo and maternal endometrium
(Wadehra et al., 2006). Thus, based on functional studies of these
genes, we hypothesize that GPAM, ADAR2A, and EMP2 may
influence different stages of FI.

Five significant SNPs associated with PU are located on
eight QTL regions for reproductive traits, including teat number
(Ding et al., 2009), corpus luteum number (Sato et al., 2011),
and nonfunctional nipples (Jonas et al., 2008). In particular,
the peak SNP MARC0040730, located on a QTL region
associated with birth body weight (SSC1, 16.1 to 289.6Mb) (Guo
et al., 2008), and the SMAD7, LIPG, and ACAA2 genes are
contained within this region. For FI, we found two significant
SNPs, WU_10.2_4_13026957 andMARC0031325, were included
within eight reproductive QTLs. One of these QTL regions is
related to plasma FSH concentration (SSC3, 21.9 to 38.2Mb)
(Rohrer et al., 2001) and contains both the SNP MARC0031325
and the EMP2 gene. To summarize, our findings confirmed the
importance of these two QTL.

CONCLUSION

Our findings provide knowledge on genomic variation and
candidate genes that are involved in the genetic mechanisms
of PU and FI. The SNPs that are associated with additive
genetic variability at different parities can be used as fundamental
information in marker assisted selection or genomic selection,
which will be helpful in improving pig breeding programs.

DATA ACCESSIBILITY

The genotype and phenotype data of the samples used in the
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