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Zhang & Jianfeng Liu

Complex traits with multiple phenotypic values changing over time are called longitudinal traits. In 
traditional genome-wide association studies (GWAS) for longitudinal traits, a combined/averaged 
estimated breeding value (EBV) or deregressed proof (DRP) instead of multiple phenotypic 
measurements per se for each individual was frequently treated as response variable in statistical 
model. This can result in power losses or even inflate false positive rates (FPRs) in the detection due to 
failure of exploring time-dependent relationship among measurements. Aiming at overcoming such 
limitation, we developed two random regression-based models for functional GWAS on longitudinal 
traits, which could directly use original time-dependent records as response variable and fit the time-
varied Quantitative Trait Nucleotide (QTN) effect. Simulation studies showed that our methods could 
control the FPRs and increase statistical powers in detecting QTN in comparison with traditional 
methods where EBVs, DRPs or estimated residuals were considered as response variables. Besides, 
our proposed models also achieved reliable powers in gene detection when implementing into two real 
datasets, a Chinese Holstein Cattle data and the Genetic Analysis Workshop 18 data. Our study herein 
offers an optimal way to enhance the power of gene detection and further understand genetic control of 
developmental processes for complex longitudinal traits.

Genome-wide association studies (GWAS) have become a powerful tool to pinpoint genetic variation of complex 
traits in livestock, plants, humans and model organisms. Linear mixed models (LMM) have been widely applied 
in GWAS as they performed well in correcting environmental factors, controlling population stratification and 
accounting for relatedness between individuals1–6.

So far, most of these commonly-used methods have been focusing on typical phenotypic data where single 
record per individual is collected. However, a different type of phenotypic data generated from longitudinal traits 
has seldom received attentions in GWAS. Longitudinal traits belong to a type of complex traits measured at vari-
ous time points during a life cycle, such as blood pressures, daily gain, milk production, and residual feed intake, 
etc. Analyzing such kind of data affords us an opportunity to investigate the heterogeneity of traits over time and 
early prediction of longitudinal traits or diseases7, 8.

In previous quantitative trait loci (QTL) linkage analysis on longitudinal traits, three statistical strategies 
are proposed as follows: The first one is based on repeatability model or multivariate model, which treats the 
multi-point measured trait as repeated measurements of the same trait or as different traits9, 10. The second one 
is based on phenotypic combination where multi-point measures of each individual are firstly fitted by some 
smoothing methods, and the estimated curve parameters, accumulated or average values for a period of time are 
then used as the alternative response variables11–13. The third one is based on varying coefficient model, which fits 
the coefficients of genetic and environmental effects as the linear regression on a set of splines or polynomials of 
time to model the time-varied effects14–17.
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These methods aforementioned have respective limitations. Specifically, repeatability/multivariate model is 
unable to explore time-dependent relationship between successive measures, and multivariate model is often 
difficult to apply in practice because it fits too many parameters in the model18. The strategy of phenotypic com-
bination merely works when all effects are supposed to be constant over time19. Varying coefficient model is only 
suitable to well-structured dada where all individuals must be measured at the fixed time points. The drawbacks 
for these strategies limit their further application in the GWAS.

In dairy cattle breeding, estimated breeding values (EBVs) or deregressed proofs of EBV (DRPs) are preferred 
as the response variable of GWAS20, 21. Nevertheless, it has been indicated that EBVs incorporating familial infor-
mation would lead to higher false positive rates (FPRs)22. DRPs had adjusted for parental average effect23, but 
could still lead to higher FPRs when the EBVs were the results of repeated measurements22. In human disease 
studies, the interaction between Single Nucleotide Polymorphism (SNP) and time/age was incorporated in the 
analysis model24–26. However, Wu and Lin indicated that there were various dynamic patterns of genetic control 
(permanent QTLs, early QTLs, late QTLs and inverse QTLs)27, which could not be completely explained by the 
interaction model.

Random regression model28 provides a better way to model the time-varied measurements/traits, and has 
been widely used in genetic evaluation of dairy cattle29, 30. Recent studies have proved that it increased the power 
to detect QTL compared with the combining phenotypes strategy, repeatability model and multivariate model 
in QTL mapping18, 19. Random regression model was also suitable for QTL detecting in the presence of gene by 
environment interactions31. However, application of this model in GWAS has not been fully surveyed so far.

In this study, we developed two models based on random regression model to model the time-varied SNP 
effect for the GWAS analysis, i.e., functional GWAS model treating each SNP as the covariate (fGWAS-C) and 
functional GWAS model treating each SNP as the factor (fGWAS-F). A series of simulation studies were per-
formed to investigate the properties of the proposed models, and to compare with previous developed models, 
i.e., genome-wide association studies where EBVs or DRPs were used as response variable with polygenic effects 
modelled (GWAS-EBV-P or GWAS-DRP-P), genome-wide association studies where EBVs or DRPs were used as 
response variable without polygenic effects modelled (GWAS-EBV-NP or GWAS-DRP-NP), and genome-wide 
association studies where estimated residuals were used as response variable (GWAS-Residual). We further vali-
dated our model with a Chinese Holstein cattle data and the Genetic Analysis Workshop 18 (GAW18)32.

Results
Simulations. Comparison of false positive rates. The FPRs (obtained by comparison with tabulated thresh-
olds of p value = 0.01 and 0.05) of the evaluated models were shown in Fig. 1. As the FPRs were independent of 
the QTN heritability (the proportion of phenotypic variance explained by a single QTN) in the simulation (see 
Materials and Methods), we averaged the FPRs across different QTN heritabilities (hQTN

2  = 0.1%, 0.5%, 1% and 
2%).

Our results indicated that FPRs of proposed fGWAS-C and fGWAS-F models as well as traditional 
GWAS-EBV-P and GWAS-DRP-P models were very close to the tabulated thresholds of 0.01 and 0.05, denoting 
these models could be used to detect QTN underlying longitudinal traits with reasonable FPRs.

It is notable that both GWAS-EBV-NP and GWAS-DRP-NP models resulted in a clearly higher FPRs com-
pared with other models, which was in agreement with the findings of Ekine et al.22. This was due to failures 
of reflecting genetic relationship among experimental individuals in the models. GWAS-Residual model ren-
dered relatively conservative FPRs among all models investigated, which further verified the similar findings of 
GRAMMAR5, 22, 33.

Power comparison. Figure 2 showed the powers of QTN detection corresponding to seven different models 
under each scenario with different QTN heritabilities. In general, the powers of all methods improved with the 

Figure 1. The type I errors (false positive rates, FPRs) of different GWAS models for the simulated data at the 
tabulated thresholds of p = 0.05 and p = 0.01 for the simulation study.
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increase of QTN heritability. Especially when the QTN heritability reached 2%, the powers were very close to 
100% for all methods.

As expected, our proposed models (fGWAS-C and fGWAS-F) achieved the highest power among all the mod-
els employed under all scenarios except when = .h 0 1%QTN

2 , where the GWAS-EBV-NP and GWAS-DRP-NP 
models achieved a higher power at the cost of high FPRs. It should be pointed out that the GWAS-Residual model 
also obtained relatively higher power even under the relatively conservative circumstance. For our two models, 
the model fGWAS-C achieved more power than fGWAS-F. The advantage of fGWAS-F was that it could test addi-
tive and dominant effect simultaneously. But it could lose power for testing the additive effect in some degree. 
Interestingly, we found that the GWAS-EBV-P gained more power than GWAS-DRP-P in our simulation.

We also evaluated powers of all models using empirical thresholds based on different FPRs for null-effect 
SNP. The receiver operating characteristic (ROC) curves plotting the statistical powers against FPRs were shown 
in Figures S1 and S2. The curves indicated that the fGWAS-C model performed best at all levels of QTN herita-
bilities, and fGWAS-F model was the second best except it achieved a slightly lower power than GWAS-Residual 
model at a lower QTN heritability (0.1%).

Furthermore, we discovered that the p-values (− plog ( )10 ) between our two proposed models as well as the 
p-values for the GWAS-EBV-P and GWAS-DRP-P models were strongly correlated (r > 0.9) (Fig. 3). This indi-
cated that these two pairs of models could lead to similar orders of p values, respectively.

Estimation accuracy of functional QTN effect. The average of estimated cumulative additive effect (see equa-
tion S3 in Supplementary Methods for calculation) or estimated cumulative effect of the QTN for different models 
and their corresponding standard deviations (SD) and root-mean-square errors (RMSE) were summarized in 
Table 1. As no dominant effect was simulated for the causal QTN, the cumulative dominant effect predicted by 
fGWAS-F was very close to zero (Table S1). In the simulation, the true cumulative QTN effect was fixed at 175.21. 
It could be seen that the fGWAS-C and fGWAS-F models achieved the most accurate estimate of the QTN effect 
regardless of QTN heritability, while the other models always underestimated the true QTN effect in different 
degree. Meanwhile, the standard deviations of the cumulative effect estimated by all the models decreased as the 
QTN heritability increased except the GWAS-Residual model, which implied that a more accurate estimation 
of QTN effect could be realized at a higher QTN heritability. The root-mean-square-errors of our two proposed 
models were always the smallest across all models for each QTN heritability scenario, and they were very close 
to the corresponding standard deviations for these two models. Furthermore, the average additive genetic effect 
curves across the 1,000 replicates predicted by the fGWAS-C and fGWAS-F models shared perfect concordance 
with the true curves (Fig. 4).

Chinese Holstein cattle data. We used Akaike information criterion34 (AIC) as well as Bayesian 
Information Criterion35 (BIC) to determine the orders of basis functions. After model selection with AIC and BIC 
values, the model with a fifth-order basis functions for population mean, a third-order for additive genetic effects 
and a fifth-order for permanent environmental effects was best fit to the data for all the three traits (Table S2). 
Manhattan plots of − plog ( )10  for milk yield (MY), fat percentage (FP) and protein percentage (PP) by the 
fGWAS-C and fGWAS-F models were shown in Fig. 5. For the three traits of Chinese Holstein cattle population, 
we found 215 genome-wise significant SNPs in total by our fGWAS-C and fGWAS-F models (Figure S3A). 
Among the 215 SNPs, 179 were commonly detected by both methods, while 33 and three were solely detected by 

Figure 2. The powers of different GWAS models with alternative QTN heritabilities at tabulated thresholds of 
p = 0.01 and p = 0.05 for the simulation study.
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fGWAS-C and fGWAS-F, respectively (Figure S3B). The results indicated that fGWAS-C and fGWAS-F shared 
perfect concordance, and fGWAS-F could lose power in some degree. Furthermore, 11 of these 215 SNPs, located 
in a relatively narrow segment (from 1.65 to 4.36 MB) of chromosome 14, were discovered to affect all the three 
traits. The well-known DGAT1 (diacylglycerol O-acyltransferase 1) gene, reported to be a major gene affecting 
milk production traits36, is located within this region.

For milk yield, 3 of 17 significant SNPs were located on chromosome 5, 12 and 15, respectively, while all the 
remaining SNPs were located between 1.48 and 4.36 MB of chromosome 14. For fat percentage, 126 significant 

Figure 3. Comparison of p-values (− plog ( )10 ) using different GWAS models at QTN heritability of 1.0% for the 
simulation study. Scatterplots of − plog ( )10  for any two GWAS models were shown at the upper triangular, with 
Pearson correlation coefficients listed at the lower triangular. The read lines represented regression line y = x; 
the blue lines were the lines of best fit for − plog ( )10  of each two models.

Models

h2
QTN

0.1% 0.5% 1% 2%

Mean ± SD RMSE Mean ± SD RMSE Mean ± SD RMSE Mean ± SD RMSE

fGWAS-C 179.45 ± 135.33 135.33 175.9 ± 63.54 63.52 176.97 ± 48.09 48.10 174.76 ± 34.17 34.15

fGWAS-F 182.87 ± 142.99 143.12 177.5 ± 63.55 63.56 175.04 ± 47.53 47.50 176.1 ± 34.26 34.26

GWAS-EBV-P 29.17 ± 41.67 151.87 34.97 ± 16.59 141.22 35.84 ± 11.62 139.86 35.19 ± 7.28 140.21

GWAS-EBV-NP 71.52 ± 114.81 154.66 67.92 ± 52.39 119.39 69.81 ± 37.35 111.82 69.73 ± 24.71 108.34

GWAS-DRP-P 71.65 ± 109.83 150.91 97.95 ± 48.75 91.34 108.85 ± 37.93 76.43 119.37 ± 27.21 62.11

GWAS-DRP-NP 108.00 ± 147.73 162.24 121.61 ± 69.30 87.58 132.73 ± 52.31 67.37 143.59 ± 36.18 48.04

GWAS-Residual 1.46 ± 1.08 173.75 6.40 ± 2.30 168.82 11.74 ± 3.25 163.50 21.53 ± 4.33 153.74

Table 1. Means, standard deviations (SD), and root-mean-square errors (RMSE) of estimated cumulative 
additive genetic effect of the QTN for different GWAS models with various QTN heritabilities in the simulation 
study.

http://S3B
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Figure 4. The plots of average additive genetic effect curves predicted by the fGWAS-C and fGWAS-F models 
against the simulated true curves with alternative QTN heritabilities for the simulation study.

Figure 5. Manhattan plots of p-values for milk yield (MY), fat percentage (FP), and protein percentage (PP) 
by the fGWAS-C and fGWAS-F model for the Chinese Holstein cattle data. Chromosomes 1–29 were shown 
with black and grey intervals. The red horizontal lines indicated the genome-wise significance level of −
log10(6.98 × 10−7) and SNPs above the lines were highlighted in green.
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SNPs were found, and most of which were located between 91.13 and 95.74 MB on chromosome 5 (15 SNPs) and 
between 1.41 and 8.45 MB on chromosome 14 (106 SNPs). For protein percentage, most of the total 113 signifi-
cant SNPs were located in the region 1.65–4.47 MB on chromosome 14 (24 SNPs), 28.80–38.49 MB on chromo-
some 20 (62 SNPs), and 44.16–45.87 MB on chromosome 20 (7 SNPs). Meanwhile, the majority of genome-wise 
significant SNPs (14 of 17 for milk yield, 103 of 126 for fat percentage and 88 of 113 for protein percentage) were 
located within reported QTLs for three corresponding traits. Interestingly, two regions (93.13–95.74 MB on chro-
mosome 5 for FP, 44.16–45.87 MB on chromosome 20 for PP) were not overlapped with the known QTL regions 
and could be potential candidate QTL regions influencing the milk traits. QTL information of the three traits 
was obtained from Animal QTL Database (QTLdb; http://www.animalgenome.org/QTLdb). The detailed infor-
mation of SNPs showing significant associations with the three traits, including their positions in the genome, p 
values, detected model, the nearest known genes and the PudMed IDs for nearest QTLs, were given in Tables S3 
through S5.

The top significant SNP for the three traits was SNP ARS-BFGL-NGS-4939, which was located within DGAT1 
gene region. This SNP explained 1.45%, 13.72% and 1.93% of the phenotypic variation for milk yield, fat per-
centage and protein percentage with the fGWAS-F model, respectively. The curves of additive effects, dominance 
effects and QTL heritabilities of this SNP for three traits were shown in Figure S4.

GAW18 data. As higher order basis functions did not converge, the model with a second-order basis 
functions for all the time-varied effects was used to fit GAW18 data. Manhattan plots of p values for two traits 
by the fGWAS-F model were shown in Fig. 6. For systolic blood pressure, two SNPs (on Chr13) reached the 
genome-wide significance level. Both of them are located within the region of gene CUL4A, which participates in 
the biological processes including nucleotide-excision repair, DNA damage recognition and regulation of DNA 
damage checkpoint. For diastolic blood pressure, 6 SNPs showed the genome-wide significance. The nearest genes 
to these 6 SNPs are CDC42 (within), TMEM248 (within), RN7SL43P (782 bp away), VAV2 (within), UFM1 (53 kb 
away), and AP000959.2 (1.47 Mb away), respectively. Interestingly, both CDC42 and VAV2 genes participate in the 
biological process of blood coagulation, and CDC42 gene also participates in heart contraction.

Discussion
Recently, a growing number of studies indicated that the expression of genes was time-dependent37–39. In current 
study, we proposed two models for the GWAS of longitudinal trait which could fit the time-varied QTN effects 
and directly use the raw longitudinal records. This can fully avoid the necessity of transforming phenotypes into 
pseudo-phenotypes, such as EBVs20, DRPs40, or estimated residuals. The simulation results indicated that our pro-
posed models could capture genetic differences varied in the entire process of the time period, thereby increasing 
the statistical power of QTN detection. Although pseudo-phenotypes were substitutions for longitudinal records, 
the scales of them would be changed41. Therefore, the QTN effects predicted by these pseudo-phenotypes meth-
ods were biased. This might not influence the significance test, as the scales of corresponding estimated errors 
would also change. However, the pseudo-phenotypes methods could not directly predict the true proportions of 
the phenotypic variance explained by QTNs. As our fGWAS-C and fGWAS-F models directly used raw pheno-
types and achieved the most accurate estimate of the QTN effects, they could be used to predict QTN heritabil-
ity in practice. Overall, the proposed random regression-based methods clearly outperformed other traditional 
methods validated by extensive simulations.

Among the traditional GWAS models, while no polygenetic effects were fitted to account for cryptic rela-
tionships between individuals, the GWAS-EBV-NP and GWAS-DRP-NP models resulted in high FPRs. DRPs 
had adjusted for parental average effect23. However, the cryptic relationships between individuals still existed 
when the EBVs were estimated from repeated measurements22. In the simulation study, our results indicated that 

Figure 6. Manhattan plots of p values for systolic blood pressure (SBP) and diastolic blood pressure (DBP) by 
the fGWAS-F model for the GAW18 data. Odd numbered autosomes were shown with black and grey intervals. 
The significant SNPs (q values < 0.05) were highlighted in green.
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GWAS-EBV-P and GWAS-DRP-P models had similar performance in controlling the FPRs. The GWAS-DRP-P 
models lowered the power in some degree in our simulation. This may be because the cryptic relationships were 
corrected twice. One is removing the parental average information from EBVs, the other is including the poly-
genetic effects into the GWAS model. The EBVs or DRPs had removed the environmental effects and combined 
the repeated phenotypic values into a single one for each individual, which resulted in a much smaller dimen-
sion of the mixed model equation, and thus was more computationally efficient and feasible. Therefore, the 
GWAS-EBV-P and GWAS-DRP-P models are still an appealing alternative for GWAS study of longitudinal data 
when the computational efficiency is the primary consideration.

Meanwhile, we applied our two models to a Chinese Holstein cattle data and the fGWAS-F model to the 
GAW18 data. The GWAS for milk production traits of Chinese Holstein population had been implemented by 
Jiang et al. with method similar to GWAS-EBV-P20. Here, we expanded the population size from 2,093 to 6,619. 
Furthermore, the Animal QTLdb had collected 4,585 QTLs (including the QTLs obtained from association anal-
ysis) for MY, FP and PP of dairy cattle since 1994, which made our study population be a suitable dataset for 
validating GWAS approaches for longitudinal traits. We mapped our significant SNPs to the Animal QTLdb and 
discovered that most of them (165/215) located within the reported QTL regions. Moreover, two novel regions 
(Chr5:93.49–94.65 MB for FP; Chr20: 44.16–45.87 MB for PP) contained several significant SNPs (15 SNPs for the 
former and 7 SNPs for the later) in relatively narrow segments, and they were potential candidate QTLs regions 
for milk production traits. The estimated curves of additive effects, dominance effects and QTN heritabilities of 
SNP ARS-BFGL-NGS-4939 (within the DGAT1 region) for milk yield, fat percentage, and protein percentage 
were also predicted by our fGWAS-F model. The trend of these estimated curves implied that the genetic effects 
were not constant, and could depend on the data or environment.

For GAW18 dataset, Chen et al. did not find any significant SNPs using admixture mapping analysis42, and 
Chung and Zou found four significant SNPs with extended EMMA1 model26. These studies indicated that human 
blood pressure might have a complicated genetic background, and there might be no major genomic region 
affecting it. In our studies, totally eight significant SNPs were discovered by our fGWAS-F model, and their near-
est genes participated in the biological processes of nucleotide-excision repair, blood coagulation, heart contrac-
tion and so on, which closely related to heart disease. These eight significant SNPs could be candidate associated 
loci for blood pressure.

Functional GWAS is not a novel conception, and has been proposed and carried out by Das et al.43. One of the 
key differences between their model and our proposed ones is that we divided the time-varied mean values for 
SNP genotypes into two parts, time-dependent population mean and SNP effects, instead of fitting them directly. 
In this way, our models can be easily implemented by the popular ASReml software. The more important differ-
ence is that time-varied polygenetic effects are fitted in our models to control the FPRs. We applied the fGWAS 
software by Das et al. to our simulated data. The resulted FPRs at tabulated thresholds of p value = 0.01 and 0.05 
were 0.046 and 0.125, respectively. As indicated by Xu44 in GWAS of non-longitudinal traits, the model ignoring 
polygenic covariance structure merely performed well for the simple experiment with one QTN. However, the 
signals became very noisy for complex experiment with multiple QTNs. In practical situation, quantitative traits 
of interest are controlled by more than one QTN45. Therefore, it should be beneficial to include polygenic effect 
in the model.

The emerging next-generation sequencing technology impels us to find the “miss heritability” of complex 
traits. Along with the technological evolution, the availability of public data, such as the 1000 Genomes Project 
and 1000 Bull Genomes Project, provides opportunities to maximize the value of our existing data though geno-
type imputation. The number of variants can be increased and true QTNs may be located in this way. The geno-
type dosages (a continuous random variable between 0 and 2) can gain more powers than “best-guess” imputed 
genotype (genotypes with the highest probability) in GWAS46. Luckily, our fGWAS-C model can also be applied 
to genotype dosages. This cannot be achieved by the fGWAS software by Das et al.

As expected, our proposed fGWAS-C and fGWAS-F models showed obvious computational inefficiency as 
the dimension of the mixed model equation was larger than other models. When the relationship matrix is estab-
lished based on pedigree, the computational burden is less challenging as the numerator relationship matrix is rel-
atively sparse. The marker-based kinship matrix can reflect the relationship between individuals more precisely. 
For example, the relationship among full siblings will be the same based on pedigree, but can be distinguishable 
with genetic markers47. However, a dense marker-based kinship matrix will increase the computational burden 
heavily. Zhang et al. suggested that a compression approach, which was called compressed mixed linear model, 
would decrease the effective sample size by clustering individuals into groups3. Meanwhile, for population with 
unknown degree of genetic relationship, Kang et al. developed a procedure for estimating the contribution of the 
polygenetic effects to the phenotypes and the polygenetic effects were not needed to fit in the GWAS model if 
they were tested non-significant2. Both approaches can be incorporated to improve our proposed models in our 
future endeavors.

In conclusion, we proposed two models fGWAS-C and fGWAS-F using random regression for functional 
GWAS of longitudinal traits on a genome-wide scale. According to our simulation study results, the proposed 
models fitted longitudinal traits successfully and outperformed the models using EBVs, DRPs or estimated resid-
uals as response variables. Using our proposed models, we have successfully found two novel regions which were 
significantly related with milking production traits for the Chinese Holstein data and some SNPs related with 
blood pressure for the GWA18 workshop dataset. Generally, functional GWAS models using random regression 
were useful and appealing in the GWAS for longitudinal traits.

Materials and Methods
General expression of the random regression model. The general expression of random regression 
model can be formulated as the time-dependent function:
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µ= + + +y t t a t p t e t( ) ( ) ( ) ( ) ( ), (1)i i i i

where yi(t) is the phenotypic value of individual i at time t; μ(t) is the overall mean at time t; ai(t) and pi(t) are the 
time-varied additive genetic effect and permanent environmental effect respectively for individual i; ei(t) is the 
time-independent random residual for each measurement of individual i at time t. Here, μ(t), ai(t) and pi(t) can 
be denoted as the linear regression for a set of basis functions, i.e., splines or polynomials, below:

∑ ∑ ∑µ β ϕ ϕ ϕ= = =
= = =

t t a t a t p t p t( ) ( ), ( ) ( ), ( ) ( ),
(2)k

nf

k k i
k

nr

ik k i
k

nr

ik k
0 0 0

1 2

where nf, nr1, and nr2 are the orders of corresponding basis functions; ϕk(t) is the value of the kth basis function at 
time t; βk is the kth fixed regression coefficient; aik and pik are the kth random regression coefficients for additive 
genetic effect and permanent environmental effect of the ith individual. The orders of different basis functions 
can be determined by model selection criteria (such as AIC and BIC) suggested by Das et al.43. The matrix form 
of (1) can be represented as:

= + + + .y Xb Qa Zp e (3)

Here, we assume there are n individuals and the number of records for individual i is mi (mi can be different 
for each individual), then the total number of records for all individuals is = ∑ =m mi

n
i1 . Thus, y is a m × 1 vector 

of phenotypic values of all individuals; b is a [n(nf + 1)] × 1 vector of fixed regression coefficients; a is the vector 
of random regression coefficients for additive genetic effects with nr1 + 1 elements for each individual; p is the 
vector of random regression coefficients for permanent environmental effects with nr2 + 1 elements for each 
individual; X, Q and Z are the corresponding design matrices; e is the vector of random residuals.

For equation (3), we have the (co) variance matrices of all random effects:

σ= ⊗ = ⊗ = = .a A G p I P e I Rvar( ) , var( ) , and var( ) e
2

Here, A is the numerator relationship matrix based on pedigree information; I is the identity matrix; ⊗ is the 
Kronecker product; G is the variance–covariance matrix for random regression coefficients of additive polygenic 
effects with size of (nr1 + 1) × (nr1 + 1); P is the variance–covariance matrix of random regression coefficients for 
permanent environmental effects with size of (nr2 + 1) × (nr2 + 1); σe

2 is the residual variance. Therefore, the 
mixed model equations can be expressed as:
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Statistical models for the GWAS of longitudinal data. Under the framework of the random regres-
sion model, we proposed two detection methods for the association analysis of longitudinal traits, i.e., functional 
GWAS model treating each SNP as the covariate (fGWAS-C), and functional GWAS model treating each SNP as 
the factor (fGWAS-F). To exploit the property of these two novel methods, several alternative models/strategies 
which used the EBVs, DRPs, or estimated residuals as the response variables for GWAS of longitudinal traits were 
also applied for extensive comparisons. Details of each model were specified below as well as listed in Table 2.

fGWAS-C and fGWAS-F models. In our proposed fGWAS-C model, an additional fixed regression term is incor-
porated into equation (1) to explain effect of the SNP investigated:

µ= + + + + .y t t x SNP t a t pe t e t( ) ( ) ( ) ( ) ( ) ( ) (5)i i i i i

Models Response variable
SNP effect time 
dependence

SNP effect 
modeling

polygenetic 
effects (fit or 
not)

fGWAS-C longitudinal records time-dependent covariate YES

fGWAS-F longitudinal records time-dependent factor YES

GWAS-EBV-P EBVs time-independent covariate YES

GWAS-EBV-NP EBVs time-independent covariate NO

GWAS-DRP-P DRPs time-independent covariate YES

GWAS-DRP-NP DRPs time-independent covariate NO

GWAS-Residual estimated residuals time-independent covariate NO

Table 2. The characters of fGWAS-C, fGWAS-F, GWAS-EBV-P, GWAS-EBV-NP, GWAS-DRP-P, GWAS-
DRP-NP, and GWAS-Residual models.
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Here, xi is a genotype indicator which is assigned 0, 1 and 2 for genotype aa, Aa and AA, respectively; SNP(t) 
represents the time-varied additive effect for each marker and can be expressed as linear regression for a set of 
basis functions as mentioned before:

∑η φ=
=

SNP t t( ) ( ),
(6)k

nf

k k
0

where, φ t( )k  is the value of the kth basis function at time t; ηk is the kth fixed regression coefficient for additive SNP 
effect; nf is the order of basis functions for the time-varied SNP effect. For convenience, we define the same order 
of time-varied population mean and SNP effect in this model.

Similarly, the fGWAS-F model is formulated as:

µ= + + + +y t t SNP t a t pe t e t( ) ( ) ( ) ( ) ( ) ( ), (7)il l i i il

where

∑λ φ= .
=

SNP t t( ) ( )
(8)l

k

nf

lk k
0

Here, SNPl(t) means time-varied effect for genotype l (AA, Aa and aa) of each marker and λlk is the kth fixed 
regression coefficient for genotype l. For fGWAS-F model, time-varied additive genetic effect, dominance genetic 
effect, and additive genetic variance of each SNP can be deduced as45:

σ

=
−

= −

= + −

add t SNP t SNP t dom t SNP t add t

t pq add t dom t q p

( ) ( ) ( )
2

, ( ) ( ) ( ),

and ( ) 2 ( ( ) ( )( )) , (9)

AA aa
Aa

a SNP,
2 2

where p and q are the allele frequencies for each locus.

GWAS-EBV-P and GWAS-EBV-NP models. Under such models, combined EBVs are firstly deduced through 
solving Equation (4). Therefore, the estimated additive genetic curve for individual i can be formulated as 

ϕ= ∑ =
ˆ ˆa t a t( ) ( )i k

nr
ik k0

1 . If we write:

∑ϕ ϕ ϕ= = ... =
=

ˆ ˆ ˆ ˆa a a t t ta Q Q Q( ) , ( ( ) ( ) ( )), and ,
(10)

i ii inr t nr c
t t

t

t10
T T

0 1
T T

1 1
min

max

where tmin and tmax are the first and last recording time of all individuals, then the accumulated EBV for each 
individual from tmin to tmax can be obtained as:

∑ ∑= = =
= =

.ˆ ˆˆEBV a t Q a Q a( )
(11)

i
t t

t

i
t t

t

t i c i
T T

min

max

min

max

The accumulated EBVs are then used as the latent response variable in the GWAS-EBV-P model.

µ= + + +ay W Zu e, (12)

and GWAS-EBV-NP model

µ= + + .ay W e (13)

Here, y is defined as the n × 1 vector of EBVs for all individuals; μ is the population mean; u is the vector of 
polygenetic effects with multivariate normal distribution MVN(0, A σa

2), where A is the numerator relationship 
matrix and σa

2 is the additive genetic variance; e is the vector of random residuals with a multivariate normal 
distribution MVN(0, I σe

2); Z is the incidence matrix for polygenetic effects; a is the regression coefficient of EBVs 
on SNP genotypes and W is the vector of SNP genotypes coded as 0, 1, and 2.

GWAS-DRP-P and GWAS-DRP-NP models. We used DRPs instead of deduced EBVs as potential response var-
iable in Equations 12 and 13, and the respective models were called GWAS-DRP-P and GWAS-DRP-NP. DRPs 
were derived from EBVs using the method proposed by Garrick et al. which allowed for the removal of the paren-
tal average information from EBVs23.

GWAS-Residual model. The GWAS-Residual model uses the adjusted estimated residuals as the response var-
iable in the GWAS analysis. This model is similar to the genomewide rapid association using mixed model and 
regression (GRAMMAR) model33, which obtains residuals of all individuals adjusted for polygenetic effects and 
subsequently analyzes the association between these residuals and each SNP covariate using rapid least-squares 
methods.

In our study, the estimated residuals for multiple records corresponding to each individual were obtained 
by solving equation (4). Then, we averaged the estimated residuals of multiple records for each individual as the 
adjusted estimated residual, which was employed as the response variable for association analysis with the model 
similar to GWAS-EBV-NP or GWAS-DRP-NP.
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Hypothesis tests. For each SNP, the incremental Wald statistic implemented by ASReml48 was used to 
examine whether the SNP is associated with the trait. The Wald chi-squared statistic with a degree of freedom of 
dfw is given by:

σ
=

−
.

ˆ
W R R(full model) (reduced model)

e
2

Here, −R R[ (full model) (reduced model)] denotes the difference between the reduction in the sums of 
squares49 (RSS) or models with and without SNP effect. The symbol dfw is degree of freedom for the SNP effect. 
For fGWAS-C model, dfw = nf + 1, and for fGWAS-F model, dfw = 2(nf + 1), where nf is the order of basis func-
tions for the time-varied SNP effect as defined above. For other models defined above, dfw = 1. The symbol σ̂e

2 is 
residual variance estimated via residual maximum likelihood (REML) method.

Simulations. We performed extensive simulations to systematically compare the performance of two random 
regression-based GWAS models (fGWAS-C and fGWAS-F) proposed here and other multiple-step traditional 
linear mixed models (GWAS-EBV-P, GWAS-EBV-NP, GWAS-DRP-P, GWAS-DRP-NP and GWAS-Residual) 
aforementioned. We evaluated statistical power, type-I error rate as well as the accuracy of SNP effect estimated 
for each GWAS method through 1,000 replication.

Population and genomic data were simulated with QMSim software50. The simulation started with a base 
population of 50 males and 50 females in generation −1,000, followed by 1,000 discrete historical generations 
(generation −1,000 to −1) with the same population size and an equal sex ratio. After 1,000 historical genera-
tions, the recent population was generated from generation −1 to generation 0 with population size expanded 
from 100 to 1,000 (500 males and 500 females). In the follow-up four recent generations (generation 1 to 4), 50 
males were randomly selected from the last generation each mating with 500 females. Each female produced 
two offspring (one male and one female) at each recent generation. Finally, a total of 2,000 females from the last 
four recent generations were collected as the experimental population investigated. We determined 1,002 SNPs 
as the simulated genomic data, two of which were selected as independent target mutations. One contributed to 
the genetic variance (treated as the QTN) and the other had null effect on the longitudinal phenotype. These two 
SNPs were adopted to evaluate statistical powers and FPRs respectively across different models. The remaining 
1000 SNPs were assigned the polygenic effects representing the genetic background of each individual, all geno-
types of which were then removed in the final simulated data.

The longitudinal phenotype observations were simulated using self-developed C program. The detailed 
description was given in Supplementary Methods. In the simulation, heritability of simulated trait h2 was set to 
0.3 and heritability of functional QTN hQTN

2  (the proportion of phenotypic variance explained by the QTN) was 
set to different levels of 0.1%, 0.5%, 1% and 2%. The variances explained by the polygenetic and permanent envi-
ronmental effect were scaled to achieve the preset heritability of the simulated trait.

In the simulation, the power and type-I error rate for each scenario were determined as the proportion of sig-
nificant detections for functional QTN and null-effect SNP respectively among 1,000 replicates for each scenario.

Real data analysis. Two real datasets, a Chinese Holstein cattle data and the Genetic Analysis Workshop 18 
(GAW18) data, were used to further validate performance of our proposed models. The detailed illustrations of 
the real data was provided in Supplementary Methods. For simplicity and conciseness, we merely employed the 
fGWAS-F model in the real data of longitudinal traits. Legendre polynomials51 were used as the basis functions 
for the overall mean, additive genetic effect and permanent environmental effect. The orders of basis functions 
were evaluated based on the smallest AIC as well as BIC. As the effects contributed by most of SNPs were very 
small, we adopted the same variance components estimated by the reduced model of equation (1), which was 
then applied to the full GWAS model for testing each marker. This was similar to the strategy of Kang et al.2 and 
Zhang et al.3. The Bonferroni correction was used to control false-positive rates for Chinese Holstein cattle data. 
Therefore, the threshold for genome-wide significance was 0.05/N, where N was the number of SNPs to be tested. 
For the GAW18 data, we estimated q values for false discovery rates52 and a false discovery rate with q value of 
0.05 was used as the threshold of the significant associations.
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